还有一个广泛的问题,但是我不确定如何通过其他途径获得有关如何改进此代码的指针。
我有一个数据框,其中包含投注赔率和游戏结果,并且我想计算投资某个团队的支出。
我现在拥有的代码可以正常工作,但是我觉得只要依靠apply
方法并放入Python,熊猫Pandas就可以完成很多工作。
这是我的代码:
def compute_payout(odds, amount=1):
if odds < 0:
return amount/(-1.0 * odds/100.0)
elif odds > 0:
return amount/(100.0/odds)
def game_payout(row, team_name):
if row['home_team'] == team_name:
if row['home_score'] > row['away_score']:
return compute_payout(row['home_odds'])
else:
return -1
elif row['away_team'] == team_name:
if row['away_score'] > row['home_score']:
return compute_payout(row['away_odds'])
else:
return -1
payout = df.apply(lambda row: game_payout(row, team_name), axis=1)
任何建议深表感谢!
答案 0 :(得分:2)
将numpy.select
与由&
链接的条件用于bitwise AND
,将~
链接到反布尔掩码:
m11 = df['home_team'] == team_name
m21 = df['away_team'] == team_name
m12 = df['home_score'] > df['away_score']
m22 = df['home_score'] < df['away_score']
vals = [df['home_odds'].apply(compute_payout), -1, df['away_odds'].apply(compute_payout), -1]
payout = np.select([m11 & m12, m11 & ~m12, m21 & m22, m21 & ~m22], vals, default=np.nan)