我编写了这段代码是为了更好地理解机器学习,但是不确定我是否走在正确的轨道上。到目前为止,它使用python 3.7在屏幕上绘制了随机的波浪线。
import turtle
import random
# Sets the Turtle main screen color
turtle.bgcolor("pink")
# Settings for bug sprite
bug = turtle.Turtle()
bug.penup()
bug.color("red")
bug_x = bug.setx(-150)
bug_y = bug.sety(12)
bug.pendown()
# Settings for food sprite
food = turtle.Turtle()
food.penup()
food.color("green")
food_x = food.setx(160)
food_y = food.sety(59)
food.pendown()
# Main Loop
while True:
# X and Y coordinate of Food
destination = [160,59]
# X and Y coordinate of Bug
x_1 = bug.xcor()
y_1 = bug.ycor()
origin = [x_1,y_1]
learn = .10
bias = 0
# Weights
wghts = [random.uniform(-1,1),random.uniform(-1,1),random.uniform(-1,1),
random.uniform(-1,1),random.uniform(-1,1),random.uniform(-1,1)]
#print(wghts)
# Output Neurons
output_1 = (wghts[0] * origin[0]) + (wghts[1] * origin[1]) + bias
output_2 = (wghts[2] * origin[0]) + (wghts[3] * origin[1]) + bias
output_3 = (wghts[4] * origin[0]) + (wghts[5] * origin[1]) + bias
#Relu Function
if output_1 >= 0.1:
output_1 = output_1
else:
output_1 = 0
if output_2 >= 0.1:
output_2 = output_2
else:
output_2 = 0
if output_3 >= 0.1:
output_3 = output_3
else:
output_3 = 0
# Compares food/destination X and Y with bug/origin X and Y.
# applies update ("learn") to all weights
if origin[0] != destination[0] and origin[1] != destination[1]:
wghts[0] = wghts[0] + learn
wghts[1] = wghts[1] + learn
wghts[2] = wghts[2] + learn
wghts[3] = wghts[3] + learn
wghts[4] = wghts[4] + learn
wghts[5] = wghts[5] + learn
else:
wghts[0] = wghts[0]
wghts[1] = wghts[1]
wghts[2] = wghts[2]
wghts[3] = wghts[3]
wghts[4] = wghts[4]
wghts[5] = wghts[5]
#print(wghts)
#print("\n")
# Creates a barrier for turtle
bug_1a = int(bug.xcor())
bug_2a = int(bug.ycor())
if bug_1a > 300 or bug_2a > 300:
bug.penup()
bug.setx(5)
bug.sety(5)
bug.pendown()
if bug_1a < -300 or bug_2a < -300:
bug.penup()
bug.setx(5)
bug.sety(5)
bug.pendown()
# Output values applied to turtle direction controls
bug.forward(output_1)
bug.right(output_2)
bug.left(output_3)
答案 0 :(得分:0)
我在您的程序中看到的问题:
wghts
在上一次迭代中一无所获-每次循环都将它们随机重置。
output_1
,output_2
和output_3
是根据刚重新初始化的wghts
计算出来的,因此更改如下:
if origin[0] != destination[0] and origin[1] != destination[1]:
wghts[0] = wghts[0] + learn
...
wghts[5] = wghts[5] + learn
从未反映在output_*
变量中。
您要添加错误的X和Y坐标,并将其用作旋转的度数。两次。我看不出这有什么意义,但我想这是神经网络。
您在代码中进行障碍检查的时间太晚,以致与后面的内容不同步。该错误不会移动,因此请更早进行检查。
以下代码清理不会使您的bug减少随机性-只是希望使您的代码更易于使用:
from turtle import Screen, Turtle
from random import uniform
# Sets the Turtle main screen color
screen = Screen()
screen.bgcolor("pink")
# X and Y coordinate of Food
destination = (160, 59)
# Settings for food sprite
food = Turtle()
food.color("green")
food.penup()
food.setposition(destination)
food.pendown()
start = (-150, 12)
# Settings for bug sprite
bug = Turtle()
bug.color("red")
bug.penup()
bug.setposition(start)
bug.pendown()
LEARN = 0.1
BIAS = 0
# Main Loop
while True:
# X and Y coordinate of Bug
x, y = bug.position()
# Creates a barrier for turtle
if not -300 <= x <= 300 or not -300 <= y <= 300:
bug.penup()
bug.goto(start)
bug.pendown()
origin = start
else:
origin = (x, y)
# Weights
wghts = [uniform(-1, 1), uniform(-1, 1), uniform(-1, 1), uniform(-1, 1), uniform(-1, 1), uniform(-1, 1)]
# Compares food/destination X and Y with bug/origin X and Y.
# applies update ("LEARN") to all weights
if origin != destination:
wghts[0] += LEARN
wghts[1] += LEARN
wghts[2] += LEARN
wghts[3] += LEARN
wghts[4] += LEARN
wghts[5] += LEARN
# Output Neurons
output_1 = (wghts[0] * origin[0]) + (wghts[1] * origin[1]) + BIAS
output_2 = (wghts[2] * origin[0]) + (wghts[3] * origin[1]) + BIAS
output_3 = (wghts[4] * origin[0]) + (wghts[5] * origin[1]) + BIAS
# Relu Function
if output_1 < 0.1:
output_1 = 0
if output_2 < 0.1:
output_2 = 0
if output_3 < 0.1:
output_3 = 0
# Output values applied to turtle direction controls
bug.forward(output_1)
bug.right(output_2)
bug.left(output_3)