我有3类类别Tree, Stump, Ground
。我列出了这些类别的清单:
CATEGORIES = ["Tree", "Stump", "Ground"]
当我打印我的预测时,它会给我输出
[[0. 1. 0.]]
我已经阅读了有关numpy的Argmax的信息,但是我不确定在这种情况下如何使用它。
我尝试使用
print(np.argmax(prediction))
但这给了我1
的输出。太好了,但是我想找出1
的索引是什么,然后打印出Category而不是最大值。
import cv2
import tensorflow as tf
import numpy as np
CATEGORIES = ["Tree", "Stump", "Ground"]
def prepare(filepath):
IMG_SIZE = 150 # This value must be the same as the value in Part1
img_array = cv2.imread(filepath, cv2.IMREAD_GRAYSCALE)
new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE))
return new_array.reshape(-1, IMG_SIZE, IMG_SIZE, 1)
# Able to load a .model, .h3, .chibai and even .dog
model = tf.keras.models.load_model("models/test.model")
prediction = model.predict([prepare('image.jpg')])
print("Predictions:")
print(prediction)
print(np.argmax(prediction))
我希望我的预测能告诉我:
Predictions:
[[0. 1. 0.]]
Stump
感谢您的阅读:)非常感谢您的帮助。
答案 0 :(得分:0)
您只需使用np.argmax
的结果为类别建立索引:
pred_name = CATEGORIES[np.argmax(prediction)]
print(pred_name)