使用SBT编译的代码(来自Kafka的wordCount)中出现此错误
[error] /home/hduser/sbt_project/project1/src/main/scala/sparkKafka.scala:4:35: object kafka is not a member of package org.apache.spark.streaming`
[error] import org.apache.spark.streaming.kafka.KafkaUtils
not found: value KafkaUtils
[error] val lines = KafkaUtils.createStream(ssc, "localhost:2181", "spark-stream ing-consumer-group", Map("customer" -> 2))
文件build.sbt
包含以下依赖项:
libraryDependencies += "org.apache.spark" % "spark-core_2.12" % "2.4.0"
libraryDependencies += "org.apache.spark" % "spark-streaming_2.12" % "2.4.0"
libraryDependencies += "org.apache.spark" % "spark-streaming-kafka-0-10_2.12" % "2.4.0"
如何正确导入KafkaUtils
?
答案 0 :(得分:2)
KafkaUtils
在org.apache.spark.streaming.kafka010
包中(请注意,导入的名称空间包括版本kafka010
)。
来自Spark Streaming Kafka Documentation:
import org.apache.spark.streaming.kafka010._
// ...
// val streamingContext = ...
val kafkaParams = Map[String, Object](
"bootstrap.servers" -> "localhost:9092",
"key.deserializer" -> classOf[StringDeserializer],
"value.deserializer" -> classOf[StringDeserializer],
"group.id" -> "use_a_separate_group_id_for_each_stream",
"auto.offset.reset" -> "latest",
"enable.auto.commit" -> (false: java.lang.Boolean)
)
val topics = Array("topicA", "topicB")
val stream = KafkaUtils.createDirectStream[String, String](
streamingContext,
PreferConsistent,
Subscribe[String, String](topics, kafkaParams)
)
注意:通常建议改用Spark Structured Streaming with Kafka。