TypeError:<class'xgboost.sklearn.xgbregressor'=“”>没有调度

时间:2019-01-11 14:25:47

标签: python kubernetes google-cloud-platform dask-distributed dask-ml

我将TPOT软件包与Dask一起使用,并且在使用远程Dask集群时遇到异常

问题的背景

我已根据http://docs.dask.org/en/latest/setup/kubernetes-helm.html

文档在Google Cloud Container Engine中创建了Dask集群

我已将conf.yaml中的工作程序作为依赖项包括在内:

- name: EXTRA_PIP_PACKAGES
      value: s3fs tpot scikit-learn featuretools dask-ml[complete] dask[complete] deap xgboost --upgrade

重现问题的过程

client = Client(address='CLUSTER-IPADDRESS:8786')
tpot = TPOTRegressor(generations=20, population_size=30, verbosity=2, use_dask=True)
tpot.fit(X_train, y_train)

预期结果

安装期间无错误或异常

当前结果

执行tpot.fit()之后 客户端生成一个回溯:

Imputing missing values in feature set
/usr/local/lib/python3.7/site-packages/sklearn/utils/deprecation.py:58: DeprecationWarning: Class Imputer is deprecated; Imputer was deprecated in version 0.20 and will be removed in 0.22. Import impute.SimpleImputer from sklearn instead.
  warnings.warn(msg, category=DeprecationWarning)
Optimization Progress
0% 0/630 [00:00<?, ?pipeline/s]
---------------------------------------------------------------------------
KeyError                                  Traceback (most recent call last)
/usr/local/lib/python3.7/site-packages/distributed/client.py in _gather(self, futures, errors, direct, local_worker)
   1492                         try:
-> 1493                             st = self.futures[key]
   1494                             exception = st.exception

KeyError: 'nanmean-4dd454cc-ecd5-48a5-8222-1603a54abf65'

During handling of the above exception, another exception occurred:

CancelledError                            Traceback (most recent call last)
/usr/local/lib/python3.7/site-packages/tpot/base.py in fit(self, features, target, sample_weight, groups)
    660                     verbose=self.verbosity,
--> 661                     per_generation_function=self._check_periodic_pipeline
    662                 )

/usr/local/lib/python3.7/site-packages/tpot/gp_deap.py in eaMuPlusLambda(population, toolbox, mu, lambda_, cxpb, mutpb, ngen, pbar, stats, halloffame, verbose, per_generation_function)
    229 
--> 230     fitnesses = toolbox.evaluate(invalid_ind)
    231     for ind, fit in zip(invalid_ind, fitnesses):

/usr/local/lib/python3.7/site-packages/tpot/base.py in _evaluate_individuals(self, individuals, features, target, sample_weight, groups)
   1223                     warnings.simplefilter('ignore')
-> 1224                     result_score_list = list(dask.compute(*result_score_list))
   1225 

/usr/local/lib/python3.7/site-packages/dask/base.py in compute(*args, **kwargs)
    396     postcomputes = [x.__dask_postcompute__() for x in collections]
--> 397     results = schedule(dsk, keys, **kwargs)
    398     return repack([f(r, *a) for r, (f, a) in zip(results, postcomputes)])

/usr/local/lib/python3.7/site-packages/distributed/client.py in get(self, dsk, keys, restrictions, loose_restrictions, resources, sync, asynchronous, direct, retries, priority, fifo_timeout, actors, **kwargs)
   2337                 results = self.gather(packed, asynchronous=asynchronous,
-> 2338                                       direct=direct)
   2339             finally:

/usr/local/lib/python3.7/site-packages/distributed/client.py in gather(self, futures, errors, maxsize, direct, asynchronous)
   1661                              direct=direct, local_worker=local_worker,
-> 1662                              asynchronous=asynchronous)
   1663 

/usr/local/lib/python3.7/site-packages/distributed/client.py in sync(self, func, *args, **kwargs)
    675         else:
--> 676             return sync(self.loop, func, *args, **kwargs)
    677 

/usr/local/lib/python3.7/site-packages/distributed/utils.py in sync(loop, func, *args, **kwargs)
    276     if error[0]:
--> 277         six.reraise(*error[0])
    278     else:

/usr/local/lib/python3.7/site-packages/six.py in reraise(tp, value, tb)
    692                 raise value.with_traceback(tb)
--> 693             raise value
    694         finally:

/usr/local/lib/python3.7/site-packages/distributed/utils.py in f()
    261                 future = gen.with_timeout(timedelta(seconds=timeout), future)
--> 262             result[0] = yield future
    263         except Exception as exc:

/usr/local/lib/python3.7/site-packages/tornado/gen.py in run(self)
   1132                     try:
-> 1133                         value = future.result()
   1134                     except Exception:

/usr/local/lib/python3.7/site-packages/tornado/gen.py in run(self)
   1140                         try:
-> 1141                             yielded = self.gen.throw(*exc_info)
   1142                         finally:

/usr/local/lib/python3.7/site-packages/distributed/client.py in _gather(self, futures, errors, direct, local_worker)
   1498                                         CancelledError(key),
-> 1499                                         None)
   1500                         else:

/usr/local/lib/python3.7/site-packages/six.py in reraise(tp, value, tb)
    692                 raise value.with_traceback(tb)
--> 693             raise value
    694         finally:

CancelledError: nanmean-4dd454cc-ecd5-48a5-8222-1603a54abf65

During handling of the above exception, another exception occurred:

RuntimeError                              Traceback (most recent call last)
<ipython-input-13-fc63521ba7ad> in <module>
----> 1 tpot.fit(X_train, y_train)

/usr/local/lib/python3.7/site-packages/tpot/base.py in fit(self, features, target, sample_weight, groups)
    691                     # raise the exception if it's our last attempt
    692                     if attempt == (attempts - 1):
--> 693                         raise e
    694             return self
    695 

/usr/local/lib/python3.7/site-packages/tpot/base.py in fit(self, features, target, sample_weight, groups)
    682                         self._pbar.close()
    683 
--> 684                     self._update_top_pipeline()
    685                     self._summary_of_best_pipeline(features, target)
    686                     # Delete the temporary cache before exiting

/usr/local/lib/python3.7/site-packages/tpot/base.py in _update_top_pipeline(self)
    756             # If user passes CTRL+C in initial generation, self._pareto_front (halloffame) shoule be not updated yet.
    757             # need raise RuntimeError because no pipeline has been optimized
--> 758             raise RuntimeError('A pipeline has not yet been optimized. Please call fit() first.')
    759 
    760     def _summary_of_best_pipeline(self, features, target):

RuntimeError: A pipeline has not yet been optimized. Please call fit() first.

检查集群工作者日志,您会发现:

 tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x7f04974ea378>, <Future finished exception=TypeError("No dispatch for <class 'xgboost.sklearn.XGBRegressor'>",)>)
Traceback (most recent call last):
  File "/opt/conda/lib/python3.6/site-packages/tornado/ioloop.py", line 758, in _run_callback
    ret = callback()
  File "/opt/conda/lib/python3.6/site-packages/tornado/stack_context.py", line 300, in null_wrapper
    return fn(*args, **kwargs)
  File "/opt/conda/lib/python3.6/site-packages/tornado/ioloop.py", line 779, in _discard_future_result
    future.result()
  File "/opt/conda/lib/python3.6/site-packages/tornado/gen.py", line 1141, in run
    yielded = self.gen.throw(*exc_info)
  File "/opt/conda/lib/python3.6/site-packages/distributed/worker.py", line 661, in handle_scheduler
    self.ensure_computing])
  File "/opt/conda/lib/python3.6/site-packages/tornado/gen.py", line 1133, in run
    value = future.result()
  File "/opt/conda/lib/python3.6/site-packages/tornado/gen.py", line 1141, in run
    yielded = self.gen.throw(*exc_info)
  File "/opt/conda/lib/python3.6/site-packages/distributed/core.py", line 386, in handle_stream
    msgs = yield comm.read()
  File "/opt/conda/lib/python3.6/site-packages/tornado/gen.py", line 1133, in run
    value = future.result()
  File "/opt/conda/lib/python3.6/site-packages/tornado/gen.py", line 1141, in run
    yielded = self.gen.throw(*exc_info)
  File "/opt/conda/lib/python3.6/site-packages/distributed/comm/tcp.py", line 206, in read
    deserializers=deserializers)
  File "/opt/conda/lib/python3.6/site-packages/tornado/gen.py", line 1133, in run
    value = future.result()
  File "/opt/conda/lib/python3.6/site-packages/tornado/gen.py", line 326, in wrapper
    yielded = next(result)
  File "/opt/conda/lib/python3.6/site-packages/distributed/comm/utils.py", line 79, in from_frames
    res = _from_frames()
  File "/opt/conda/lib/python3.6/site-packages/distributed/comm/utils.py", line 65, in _from_frames
    deserializers=deserializers)
  File "/opt/conda/lib/python3.6/site-packages/distributed/protocol/core.py", line 131, in loads
    value = _deserialize(head, fs, deserializers=deserializers)
  File "/opt/conda/lib/python3.6/site-packages/distributed/protocol/serialize.py", line 178, in deserialize
    return loads(header, frames)
  File "/opt/conda/lib/python3.6/site-packages/distributed/protocol/serialize.py", line 48, in dask_loads
    loads = dask_deserialize.dispatch(typ)
  File "/opt/conda/lib/python3.6/site-packages/dask/utils.py", line 406, in dispatch
    raise TypeError("No dispatch for {0}".format(cls))
TypeError: No dispatch for <class 'xgboost.sklearn.XGBRegressor'>

有人在解决Dask问题上有经验吗?

0 个答案:

没有答案