因此,在二进制数组中,我试图找到0和1彼此相邻的点,并使用修改0值表示的这些交叉点重绘数组。只是想知道是否有比使用嵌套的for循环更好的将numpy数组中的每个值与8个周围的值进行比较的方法。
目前我有这个,为了便于阅读,这里有4种情况
for x in range(1, rows - 1):
for y in range(1, columns - 1):
if f2[x, y] == 0:
if f2[x-1, y] == 1 or f2[x+1, y] == 1 or f2[x, y-1] == 1 or f2[x, y+1] == 1:
f2[x, y] = 2
编辑
例如
[[1, 1, 1, 1, 1, 1, 1],
[1, 1, 0, 0, 0, 1, 1],
[1, 1, 0, 0, 0, 1, 1],
[1, 1, 0, 0, 0, 1, 1],
[1, 1, 1, 1, 1, 1, 1]]
到
[[1, 1, 1, 1, 1, 1, 1],
[1, 1, 2, 2, 2, 1, 1],
[1, 1, 2, 0, 2, 1, 1],
[1, 1, 2, 2, 2, 1, 1],
[1, 1, 1, 1, 1, 1, 1]]
答案 0 :(得分:2)
可以使用二进制形态学函数快速解决此问题
import numpy as np
from scipy.ndimage.morphology import binary_dilation, generate_binary_structure
# Example array
f2 = np.zeros((5,5), dtype=float)
f2[2,2] = 1.
# This line determines the connectivity (all 8 neighbors or just 4)
struct_8_neighbors = generate_binary_structure(2, 2)
# Replace cell with maximum of neighbors (True if any neighbor != 0)
has_neighbor = binary_dilation(f2 != 0, structure=struct_8_neighbors)
# Was cell zero to begin with
was_zero = f2 == 0
# Update step
f2[has_neighbor & was_zero] = 2.