我有一个复杂的闪亮应用程序(下面是一个简单的示例),它看起来像这样:
该应用程序使用户可以更改四个参数(selectInput
)。较低的参数取决于较高的参数(例如month
上的year
,type
和year
上的month
等)。一切正常,但事实是,当我更改一个参数时,另一个也会更改。在某些情况下需要它,但并非总是如此。如果先前选择的级别在新配置中不存在,则需要它,例如,当我遇到以下情况时,不应更改它。例如我为'AGD'
和size
选择了'medium'
和year
month
类型,我展示了这种组合的奖品或其他内容。然后,我想将其与size
type
中的相同'RTV'
进行比较,因此我更改了type
参数。一切正常,但是size
更改为'big'
,而我希望它仍然是'medium'
。我可以再单击一次,但为什么呢?那就太不方便了...
您知道如何处理这样的问题吗?
我设法使用observe
和reactive values
来实现两个依赖关系,但是对于四个依赖关系却不起作用。
这是我的代码:
library("shiny")
library("plotly")
library("dplyr")
data <- data.frame(year = rep(c(rep(2018, 6), rep(2019, 11)), each = 5),
month = rep(c(7:12, 1:11), each = 5),
type = rep(c("AGD", "AGD", "AGD", "RTV", "RTV"), 6 + 11),
value = sample(1:100, 85),
size = rep(c("big", "small", "medium", "big", "miedium"), 6 + 11))
ui <- fluidPage(
sidebarLayout(
sidebarPanel(
uiOutput("year"),
uiOutput("month"),
uiOutput("type"),
uiOutput("size")
),
mainPanel(
)
)
)
server <- function(input, output, session) {
output$year <- renderUI({
year <- data %>%
select(year) %>%
unique()
selectInput("year",
"YEAR",
year$year,
selected = max(year$year))
})
output$month <- renderUI({
month <- data %>%
filter(year == input$year) %>%
select(month) %>%
unique() %>%
arrange()
selectInput("month",
"MONTH",
month$month,
selected = max(month$month))
})
output$type <- renderUI({
type <- data %>%
filter(year == input$year,
month == input$month) %>%
select(type) %>%
unique() %>%
arrange()
selectInput("type",
"TYPE",
type$type,
selected = type$type[1])
})
output$size <- renderUI({
size <- data %>%
filter(year == input$year,
month == input$month,
type == input$type) %>%
select(size) %>%
unique() %>%
arrange()
selectInput("size",
"SIZE",
size$size,
selected = size$size[1])
})
}
shinyApp(ui = ui, server = server)
答案 0 :(得分:1)
此处的代码有两个问题,该解决方案使我们能够将内存的概念引入应用程序。首先,我要立即解决两个问题。
c("big", "small", "medium", "big", "medium")
而不是c("big", "small", "medium", "big", "miedium")
每次更改输入时,uiOutput()
和renderUI()
的组合将使服务器提供一个新 selectInput
按钮。相反,我们可以简单地实例化静态UI元素并使用updateSelectInput()
要解决此问题,请首先修复上述的1)和2)。然后我们需要介绍内存的概念。服务器需要知道先前选择的内容,以便我们在更新selectInput
时将其设置为默认选项。我们可以将其存储为常规列表(年份,月份,类型和大小的变量)或使用reactiveValues
的响应列表。
非常高兴您为过滤选项确定了明确的逻辑,从年->月->类型->大小有一个清晰的层次结构。但是,例如每次更改months
时,都会为type
和size
生成一个新输入。
我们现在想介绍一个简单的逻辑,其中输入选择仅修改存储器selected_vals
。然后,存储器中的更改会触发其他输入的更新。最好在下面的解决方案中看到。
library("shiny")
library("plotly")
library("dplyr")
data <- data.frame(year = rep(c(rep(2018, 6), rep(2019, 11)), each = 5),
month = rep(c(7:12, 1:11), each = 5),
type = rep(c("AGD", "AGD", "AGD", "RTV", "RTV"), 6 + 11),
value = sample(1:100, 85),
size = rep(c("big", "small", "medium", "big", "medium"), 6 + 11))
years = data %>% arrange(year) %>% .$year %>% unique(.)
month = data %>% arrange(month) %>% .$month %>% unique(.)
type = data %>% arrange(type)%>% .$type %>% unique(.)
size = data %>% arrange(size) %>%.$size %>% unique(.)
ui <- fluidPage(
sidebarLayout(
sidebarPanel(
selectInput("year","Year",choices = years,selected = 2018),
selectInput("month","Month",choices = month,selected = 7),
selectInput("type","Type",choices = type,selected = "AGD"),
selectInput("size","Size",choices = size,selected = "big")
),
mainPanel(
)
)
)
server <- function(input, output, session) {
#------- Initialize the Memory ----------
selected_vals = reactiveValues(year = 2019,month = 7, type = "AGD", size = "big")
#------ Whenever any of the inputs are changed, it only modifies the memory----
observe({
req(input$year,input$month,input$type,input$size)
selected_vals$year <- input$year
selected_vals$month <- input$month
selected_vals$type <- input$type
selected_vals$size <- input$size
})
#------ Update all UI elements using the values stored in memory ------
observe({
year <- data %>%
select(year) %>%
unique()
updateSelectInput(session,"year",choices = year$year,selected = selected_vals$year)
})
observe({
month <- data %>%
filter(year == selected_vals$year) %>%
select(month) %>%
unique() %>%
arrange()
#Check if the value is in memory, if not return NULL (it defaults to the first element)
if (selected_vals$month %in% month$month) displayVal = selected_vals$month else displayVal = NULL
updateSelectInput(session,"month",choices = month$month,selected = displayVal)
})
observe({
type <- data %>%
filter(year == selected_vals$year,
month == selected_vals$month) %>%
select(type) %>%
unique() %>%
arrange()
#Check if the value is in memory, if not return NULL (it defaults to the first element)
if (selected_vals$type %in% type$type) displayVal = selected_vals$type else displayVal = NULL
updateSelectInput(session,"type",choices = type$type,selected = displayVal)
})
observe({
size <- data %>%
filter(year == selected_vals$year,
month == selected_vals$month,
type == selected_vals$type) %>%
select(size) %>%
unique() %>%
arrange()
#Check if the value is in memory, if not return NULL (it defaults to the first element)
if(selected_vals$size %in% size$size) displayVal = selected_vals$size else displayVal = NULL
updateSelectInput(session,"size",choices = size$size,selected = displayVal)
})
}
shinyApp(ui = ui, server = server)
如下面的注释中所述,代码中存在错误。这是由于以下事实造成的:然后displayVal = NULL
闪亮设置默认值以显示为数组中的第一个元素。但是,我们忘记将其存储在内存selected_vals
中。下面的代码解决了这个问题。
library("shiny")
library("plotly")
library("dplyr")
data <- data.frame(year = rep(c(rep(2018, 6), rep(2019, 11)), each = 5),
month = rep(c(7:12, 1:11), each = 5),
type = rep(c("AGD", "AGD", "AGD", "RTV", "RTV"), 6 + 11),
value = sample(1:100, 85),
size = rep(c("big", "small", "medium", "big", "medium"), 6 + 11))
years = data %>% arrange(year) %>% .$year %>% unique(.)
month = data %>% arrange(month) %>% .$month %>% unique(.)
type = data %>% arrange(type)%>% .$type %>% unique(.)
size = data %>% arrange(size) %>%.$size %>% unique(.)
ui <- fluidPage(
sidebarLayout(
sidebarPanel(
selectInput("year","Year",choices = years,selected = 2018),
selectInput("month","Month",choices = month,selected = 7),
selectInput("type","Type",choices = type,selected = "AGD"),
selectInput("size","Size",choices = size,selected = "big")
),
mainPanel(
)
)
)
server <- function(input, output, session) {
#------- Initialize the Memory ----------
selected_vals = reactiveValues(year = 2019,month = 7, type = "AGD", size = "big")
#------ Whenever any of the inputs are changed, it only modifies the memory----
observe({
req(input$year,input$month,input$type,input$size)
selected_vals$year <- input$year
selected_vals$month <- input$month
selected_vals$type <- input$type
selected_vals$size <- input$size
})
#------ Update all UI elements using the values stored in memory ------
observe({
year <- data %>%
select(year) %>%
unique()
updateSelectInput(session,"year",choices = year$year,selected = selected_vals$year)
})
observe({
month <- data %>%
filter(year == selected_vals$year) %>%
select(month) %>%
unique() %>%
arrange()
#Check if the value is in memory, if not return NULL (it defaults to the first element)
if (selected_vals$month %in% month$month){
displayVal = selected_vals$month
}else{
displayVal = NULL
selected_vals$month = month$month[1]
}
updateSelectInput(session,"month",choices = month$month,selected = displayVal)
})
observe({
type <- data %>%
filter(year == selected_vals$year,
month == selected_vals$month) %>%
select(type) %>%
unique() %>%
arrange()
#Check if the value is in memory, if not return NULL (it defaults to the first element)
if (selected_vals$type %in% type$type){
displayVal = selected_vals$type
}else{
displayVal = NULL
selected_vals$type = tpye$type[1]
}
updateSelectInput(session,"type",choices = type$type,selected = displayVal)
})
observe({
size <- data %>%
filter(year == selected_vals$year,
month == selected_vals$month,
type == selected_vals$type) %>%
select(size) %>%
unique() %>%
arrange()
#Check if the value is in memory, if not return NULL (it defaults to the first element)
if(selected_vals$size %in% size$size){
displayVal = selected_vals$size
} else{
displayVal = NULL
selected_vals$size = size$size[1]
}
updateSelectInput(session,"size",choices = size$size,selected = displayVal)
})
}
shinyApp(ui = ui, server = server)