我想通过mutate函数而不是ddplyr one做同样的事情。是否可以通过某种方式在此处执行非矢量化操作?
test <- tibble::tibble(
x = c(1,2,3),
y = c(0.5,1,1.5)
)
d <- c(1.23, 0.99, 2.18)
test %>% mutate(., s = (function(x, y) {
dn <- dnorm(x = d, mean = x, sd = y)
s <- sum(dn)
s
})(x,y))
test %>% plyr::ddply(., c("x","y"), .fun = function(row) {
dn <- dnorm(x = d, mean = row$x, sd = row$y)
s <- sum(dn)
s
})
答案 0 :(得分:0)
一种流行的方法是使用dplyr
函数:rowwise()
。
library(tidyverse)
test <- tibble::tibble(
x = c(1,2,3),
y = c(0.5,1,1.5)
)
d <- c(1.23, 0.99, 2.18)
test %>%
rowwise() %>% # prior to mutate specify calculate rowwise
mutate(., s = (function(x, y) {
dn <- dnorm(x = d, mean = x, sd = y)
s <- sum(dn)
s})(x,y))
这将产生以下结果:
# A tibble: 3 x 3
x y s
<dbl> <dbl> <dbl>
1 1 0.5 1.56
2 2 1 0.929
3 3 1.5 0.470