我设法用DNNRegressor编写了一个TensorFlow python程序。我已经训练了模型,并且能够通过手动创建的输入(恒定张量)从Python中的模型获得预测。我还能够以二进制格式导出模型。
import pandas as pd
import numpy as np
import tensorflow as tf
from tensorflow.python.framework import graph_util
#######################
# Setup
#######################
# Converting Data into Tensors
def input_fn(df, training = True):
# Creates a dictionary mapping from each continuous feature column name (k) to
# the values of that column stored in a constant Tensor.
continuous_cols = {k: tf.constant(df[k].values)
for k in continuous_features}
feature_cols = dict(list(continuous_cols.items()))
if training:
# Converts the label column into a constant Tensor.
label = tf.constant(df[LABEL_COLUMN].values)
# Returns the feature columns and the label.
return feature_cols, label
# Returns the feature columns
return feature_cols
def train_input_fn():
return input_fn(train_df)
def eval_input_fn():
return input_fn(evaluate_df)
#######################
# Data Preparation
#######################
df_train_ori = pd.read_csv('training.csv')
df_test_ori = pd.read_csv('test.csv')
train_df = df_train_ori.head(10000)
evaluate_df = df_train_ori.tail(5)
test_df = df_test_ori.head(1)
MODEL_DIR = "/tmp/model"
BIN_MODEL_DIR = "/tmp/modelBinary"
features = train_df.columns
continuous_features = [feature for feature in features if 'label' not in feature]
LABEL_COLUMN = 'label'
engineered_features = []
for continuous_feature in continuous_features:
engineered_features.append(
tf.contrib.layers.real_valued_column(
column_name=continuous_feature,
dimension=1,
default_value=None,
dtype=tf.int64,
normalizer=None
))
#######################
# Define Our Model
#######################
regressor = tf.contrib.learn.DNNRegressor(
feature_columns=engineered_features,
label_dimension=1,
hidden_units=[128, 256, 512],
model_dir=MODEL_DIR
)
#######################
# Training Our Model
#######################
wrap = regressor.fit(input_fn=train_input_fn, steps=5)
#######################
# Evaluating Our Model
#######################
results = regressor.evaluate(input_fn=eval_input_fn, steps=1)
for key in sorted(results):
print("%s: %s" % (key, results[key]))
#######################
# Save binary model (to be used in Java)
#######################
tfrecord_serving_input_fn = tf.contrib.learn.build_parsing_serving_input_fn(tf.contrib.layers.create_feature_spec_for_parsing(engineered_features))
regressor.export_savedmodel(
export_dir_base=BIN_MODEL_DIR,
serving_input_fn = tfrecord_serving_input_fn,
assets_extra=None,
as_text=False,
checkpoint_path=None,
strip_default_attrs=False)
我的下一步是将模型加载到Java中并做出一些预测。但是,在Java中为模型指定输入时确实存在问题。
import org.tensorflow.*;
import org.tensorflow.framework.MetaGraphDef;
import org.tensorflow.framework.SignatureDef;
import org.tensorflow.framework.TensorInfo;
import java.util.List;
import java.util.Map;
public class ModelEvaluator {
public static void main(String[] args) throws Exception {
System.out.println("Using TF version: " + TensorFlow.version());
SavedModelBundle model = SavedModelBundle.load("/tmp/modelBinary/1546510038", "serve");
Session session = model.session();
printSignature(model);
printAllNodes(model);
float[][] km1 = new float[1][1];
km1[0][0] = 10;
Tensor inKm1 = Tensor.create(km1);
float[][] km2 = new float[1][1];
km2[0][0] = 10000;
Tensor inKm2 = Tensor.create(km2);
List<Tensor<?>> outputs = session.runner()
.feed("dnn/input_from_feature_columns/input_from_feature_columns/km1/ToFloat", inKm1)
.feed("dnn/input_from_feature_columns/input_from_feature_columns/km2/ToFloat", inKm2)
.fetch("dnn/regression_head/predictions/Identity:0")
.run();
System.out.println("\n\nOutputs from evaluation:");
for (Tensor<?> output : outputs) {
if (output.dataType() == DataType.STRING) {
System.out.println(new String(output.bytesValue()));
} else {
float[] outArray = new float[1];
output.copyTo(outArray);
System.out.println(outArray[0]);
}
}
}
public static void printAllNodes(SavedModelBundle model) {
model.graph().operations().forEachRemaining(x -> {
System.out.println(x.name() + " " + x.numOutputs());
});
}
/**
* This info can also be obtained from a command prompt via the command:
* saved_model_cli show --dir <dir-to-the-model> --tag_set serve --signature_def serving_default
* <p>
* See this where they also try to input data to a DNN regressor:
* https://github.com/tensorflow/tensorflow/issues/12367
* <p>
* https://github.com/tensorflow/tensorflow/issues/14683
* <p>
* https://github.com/migueldeicaza/TensorFlowSharp/issues/293
*/
public static void printSignature(SavedModelBundle model) throws Exception {
MetaGraphDef m = MetaGraphDef.parseFrom(model.metaGraphDef());
SignatureDef sig = m.getSignatureDefOrThrow("serving_default");
int numInputs = sig.getInputsCount();
int i = 1;
System.out.println("-----------------------------------------------");
System.out.println("MODEL SIGNATURE");
System.out.println("Inputs:");
for (Map.Entry<String, TensorInfo> entry : sig.getInputsMap().entrySet()) {
TensorInfo t = entry.getValue();
System.out.printf(
"%d of %d: %-20s (Node name in graph: %-20s, type: %s)\n",
i++, numInputs, entry.getKey(), t.getName(), t.getDtype());
}
int numOutputs = sig.getOutputsCount();
i = 1;
System.out.println("Outputs:");
for (Map.Entry<String, TensorInfo> entry : sig.getOutputsMap().entrySet()) {
TensorInfo t = entry.getValue();
System.out.printf(
"%d of %d: %-20s (Node name in graph: %-20s, type: %s)\n",
i++, numOutputs, entry.getKey(), t.getName(), t.getDtype());
}
System.out.println("-----------------------------------------------");
}
}
从Java代码可以看出,我为两个节点(用“ km1”和“ km2”命名的东西)提供了输入。但是我想那不是正确的方法。猜猜我需要为节点“ input_example_tensor:0”提供输入吗?
问题是:我如何为加载到Java中的模型真正创建输入?在python中,我必须创建一个键为“ km1”和“ km2”的字典,并设置两个恒定张量。
答案 0 :(得分:1)
在Python上,尝试
feature_spec = tf.feature_column.make_parse_example_spec(columns)
example_input_fn = tf.estimator.export.build_parsing_serving_input_receiver_fn(feature_spec)
请查看 build_parsing_serving_input_receiver_fn ,以及名为 input_example_tensor 的输入,该输入需要序列化的tf.Example。
在Java上,尝试创建Example输入(打包在org.tensorflow:proto artifact中)和一些类似这样的代码:
public static void main(String[] args) {
Example example = buildExample(yourFeatureNameAndValueMap);
byte[][] exampleBytes = {example.toByteArray()};
try (Tensor<String> inputBatch = Tensors.create(exampleBytes);
Tensor<Float> output =
yourSession
.runner()
.feed(yourInputsName, inputBatch)
.fetch(yourOutputsName)
.run()
.get(0)
.expect(Float.class)) {
long[] shape = output.shape();
int batchSize = (int) shape[0];
int labelNum = (int) shape[1];
float[][] resultValues = output.copyTo(new float[batchSize][labelNum]);
System.out.println(resultValues);
}
}
public static Example buildExample(Map<String, ?> yourFeatureNameAndValueMap) {
Features.Builder builder = Features.newBuilder();
for (String attr : yourFeatureNameAndValueMap.keySet()) {
Object value = yourFeatureNameAndValueMap.get(attr);
if (value instanceof Float) {
builder.putFeature(attr, feature((Float) value));
} else if (value instanceof float[]) {
builder.putFeature(attr, feature((float[]) value));
} else if (value instanceof String) {
builder.putFeature(attr, feature((String) value));
} else if (value instanceof String[]) {
builder.putFeature(attr, feature((String[]) value));
} else if (value instanceof Long) {
builder.putFeature(attr, feature((Long) value));
} else if (value instanceof long[]) {
builder.putFeature(attr, feature((long[]) value));
} else {
throw new UnsupportedOperationException("Not supported attribute value data type!");
}
}
Features features = builder.build();
Example example = Example.newBuilder()
.setFeatures(features)
.build();
return example;
}
private static Feature feature(String... strings) {
BytesList.Builder b = BytesList.newBuilder();
for (String s : strings) {
b.addValue(ByteString.copyFromUtf8(s));
}
return Feature.newBuilder().setBytesList(b).build();
}
private static Feature feature(float... values) {
FloatList.Builder b = FloatList.newBuilder();
for (float v : values) {
b.addValue(v);
}
return Feature.newBuilder().setFloatList(b).build();
}
private static Feature feature(long... values) {
Int64List.Builder b = Int64List.newBuilder();
for (long v : values) {
b.addValue(v);
}
return Feature.newBuilder().setInt64List(b).build();
}
如果要自动获取 yourInputsName 和 yourOutputsName ,可以尝试
SignatureDef signatureDef;
try {
signatureDef = MetaGraphDef.parseFrom(model.metaGraphDef()).getSignatureDefOrThrow(SIGNATURE_DEF_KEY);
} catch (InvalidProtocolBufferException e) {
throw new RuntimeException(e.getMessage(), e);
}
String yourInputsName = signatureDef.getInputsOrThrow(SIGNATURE_DEF_INPUT_KEY).getName();
String yourOutputsName = signatureDef.getOutputsOrThrow(SIGNATURE_DEF_OUTPUT_KEY).getName();
在Java上,请参阅DetectObjects.java。在Python上,请参阅wide_deep