我在PySpark中有一个数据表,其中包含两列,数据类型为'struc'。
请参见下面的示例数据框:
word_verb word_noun
{_1=cook, _2=VB} {_1=chicken, _2=NN}
{_1=pack, _2=VBN} {_1=lunch, _2=NN}
{_1=reconnected, _2=VBN} {_1=wifi, _2=NN}
我想将两列连接在一起,以便对连接的动词和名词块进行频率计数。
我尝试了以下代码:
df = df.withColumn('word_chunk_final', F.concat(F.col('word_verb'), F.col('word_noun')))
但是出现以下错误:
AnalysisException: u"cannot resolve 'concat(`word_verb`, `word_noun`)' due to data type mismatch: input to function concat should have been string, binary or array, but it's [struct<_1:string,_2:string>, struct<_1:string,_2:string>]
我想要的输出表如下。串联的新字段的数据类型为字符串:
word_verb word_noun word_chunk_final
{_1=cook, _2=VB} {_1=chicken, _2=NN} cook chicken
{_1=pack, _2=VBN} {_1=lunch, _2=NN} pack lunch
{_1=reconnected, _2=VBN} {_1=wifi, _2=NN} reconnected wifi
答案 0 :(得分:1)
您的代码几乎在那里。
假设您的架构如下:
df.printSchema()
#root
# |-- word_verb: struct (nullable = true)
# | |-- _1: string (nullable = true)
# | |-- _2: string (nullable = true)
# |-- word_noun: struct (nullable = true)
# | |-- _1: string (nullable = true)
# | |-- _2: string (nullable = true)
您只需要访问每一列的_1
字段的值:
import pyspark.sql.functions as F
df.withColumn(
"word_chunk_final",
F.concat_ws(' ', F.col('word_verb')['_1'], F.col('word_noun')['_1'])
).show()
#+-----------------+------------+----------------+
#| word_verb| word_noun|word_chunk_final|
#+-----------------+------------+----------------+
#| [cook,VB]|[chicken,NN]| cook chicken|
#| [pack,VBN]| [lunch,NN]| pack lunch|
#|[reconnected,VBN]| [wifi,NN]|reconnected wifi|
#+-----------------+------------+----------------+
此外,您应该使用concat_ws
(“用分隔符连接”)而不是concat
来添加字符串以及它们之间的空格。类似于str.join
在python中的工作方式。