Usually the input tensor of the Conv2D
in Keras is a 4D tensor with the dimension batch_size * n * n * channel_size
. Now I have a 5D tensor with the dimension batch_size * N * n * n * channel_size
and I want to apply the 2D convolutional layer for the last three dimensions for each i in N
. For example, if the kernel size is 1, then I expect that the output will have the dimension batch_size * N * n * n * 1
.
Anyone knows some easy ways to implement it with Keras?
For example, for the fully-connected layer Keras can do it automatically. If the input has the shape batch_size * N * n
, then the Dense layer in Keras will set a FC layer for each i in N
. Hence we will get the output with batch_size * N * m
, if we set Dense(m)
.
答案 0 :(得分:0)
您可以使用TimeDistributed
图层包装器将相同的卷积图层应用于5D张量中的所有图像。例如:
model = Sequential()
model.add(TimeDistributed(Conv2D(5, (3,3), padding='same'), input_shape=(10, 100, 100, 3)))
model.summary()
模型摘要:
Layer (type) Output Shape Param #
=================================================================
time_distributed_2 (TimeDist (None, 10, 100, 100, 5) 140
=================================================================
Total params: 140
Trainable params: 140
Non-trainable params: 0
_________________________________________________________________