我有一些神经网络(张量流)
n_steps = 10
n_inputs = 3
n_outputs = 1
n_neurons = 100
n_layers = 3
X = tf.placeholder(tf.float32, [None, n_steps, n_inputs])
y = tf.placeholder(tf.float32, [None, n_steps, n_outputs])
layers = []
for i in range(n_layers):
layers.append(tf.contrib.rnn.BasicRNNCell(num_units=n_neurons, activation=tf.nn.relu))
multi_layer_cell = tf.contrib.rnn.MultiRNNCell(layers)
rnn_outputs, states = tf.nn.dynamic_rnn(multi_layer_cell, X, dtype=tf.float32)
像下面这样正确吗?它正在工作,但我不确定;)
training = tf.placeholder_with_default(True,shape=())
X_dropout = tf.layers.dropout(X,dropout_rate,training=training)
rnn_outputs, states = tf.nn.dynamic_rnn(multi_layer_cell, X_dropout, dtype=tf.float32)
如何将tensorflow缺失添加到该神经网络中?
感谢您的建议!
答案 0 :(得分:1)
您的代码只是对输入X
进行了删除,您应该使用tf.contrib.rnn.DropoutWrapper
(link)。
layers = []
for i in range(n_layers):
layers.append(tf.contrib.rnn.DropoutWrapper(tf.contrib.rnn.BasicRNNCell(num_units=n_neurons
, activation=tf.nn.relu)
,output_keep_prob=1-dropout_rate))