我仍然是R语言的初学者。我需要一些代码帮助,这些代码需要在向量中搜索列表中的术语并返回TRUE。如果为TRUE,则返回匹配项的字符串。
我设置为告诉我术语是否匹配并返回第一个匹配的术语,但是我不确定如何获得其余匹配的术语。
在所附的代码中,我有Desired_Output和不完善的Final_Output。
#create dataset of 2 columns/vectors. 1st column is "Job Title", 2nd column is "Work Experience"
'Work Experience' <- c("cooked food; cleaned house; made beds", "analyzed data; identified gaps; used sql, python, and r", "used tableau to make dashboards for clients; applied advanced macro excel functions", "financial planning and strategy; consulted with leaders and clients")
'Job Title' <- c("dad", "research analyst", "business intelligence consultant", "finance consultant")
Job_Hist <- data.frame(`Job Title`, `Work Experience`)
#create list of terms to search for in Job_Hist
Term_List <- c("python", " r", "sql", "tableau", "excel")
#use grepl to search the Work Experience vector for terms in CS_Term_List THEN return TRUE or FALSE
Term_TF<- grepl(paste(Term_List, collapse = '|'),Job_Hist$Work.Experience)
#add a new column to our final output dataframe that shows if the job experience matched our terms
Final_Output<-Job_Hist
Final_Output$Term_Test <- Term_TF
#Let's see what what terms caused the TRUE Flag in the Final_Output
m<-regexpr(paste(Term_List, collapse = '|'),
Job_Hist$Work.Experience, perl=TRUE)
T_Match <- regmatches(Job_Hist$Work.Experience,m)
#Compare Final_Output to my Desired_Output and please help me :)
Desired_T_Match <- c("NA", "sql, python, r", "tableau, excel", "NA")
Desired_Output <- data.frame(`Job Title`, `Work Experience`, Term_TF, Desired_T_Match)
#I need 2 things.
#1) a way to tie T_Match back to Final_Output... something like if, TRUE then match
#2) a way to return every term matched in a coma delimited string. Example: research analyst analyzed data... TRUE sql, python
答案 0 :(得分:1)
您可以使用stringr::str_extract_all
从每一行中获取匹配项列表:
library(stringr)
library(tidyverse)
Job_Hist$matches <- str_extract_all(Job_Hist$Work.Experience,
paste(Term_List, collapse = '|'), simplify = TRUE)
Work.Experience Term matches.1 matches.2
1 cooked food; cleaned house; made beds FALSE
2 analyzed data; identified gaps; used sql, python, and r TRUE sql python
3 used tableau to make dashboards for clients; applied advanced macro excel functions TRUE tableau excel
4 financial planning and strategy; consulted with leaders and clients FALSE
matches.3
1
2 r
3
4
编辑:如果您希望在一列中以逗号分隔的字符串作为匹配项,则可以使用:
str_extract_all(Job_Hist$Work.Experience, paste(Term_List, collapse = '|')) %>%
sapply(., paste, collapse = ", ")
matches
1
2 sql, python, r
3 tableau, excel
4
请注意,如果您在simplify = FALSE
中使用默认参数str_extract_all
,则列matches
将看起来正确,就像上面sapply
所得到的结果一样。但是,如果使用str()
进行检查,您会看到每个元素实际上都是它自己的列表,这将对某些类型的分析造成问题。