我陷入了SKlearn的属性错误

时间:2019-01-02 11:23:35

标签: python machine-learning scikit-learn

我正在重新访问我今年早些时候做的机器学习教程,并且由于我有新笔记本电脑,它似乎引发了一些兼容性问题。我查看了其他一些SO答案,并部分地根据最新版本的SKlearn中对新名称的要求对其进行了解决。这是代码,在我完成本教程后可以正常运行

import quandl, math
import numpy as np
import pandas as pd
from sklearn import preprocessing, cross_validation, svm
from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt
from matplotlib import style
import datetime

style.use('ggplot')

df = quandl.get("WIKI/GOOGL")
df = df[['Adj. Open',  'Adj. High',  'Adj. Low',  'Adj. Close', 'Adj. 
Volume']]
df['HL_PCT'] = (df['Adj. High'] - df['Adj. Low']) / df['Adj. Close'] * 100.0
df['PCT_change'] = (df['Adj. Close'] - df['Adj. Open']) / df['Adj. Open'] * 
100.0

df = df[['Adj. Close', 'HL_PCT', 'PCT_change', 'Adj. Volume']]
forecast_col = 'Adj. Close'
df.fillna(value=-99999, inplace=True)
forecast_out = int(math.ceil(0.01 * len(df)))
df['label'] = df[forecast_col].shift(-forecast_out)

X = np.array(df.drop(['label'], 1))
X = preprocessing.scale(X)
X_lately = X[-forecast_out:]
X = X[:-forecast_out]

df.dropna(inplace=True)

y = np.array(df['label'])

X_train, X_test, y_train, y_test = cross_validation.train_test_split(X, y, 
test_size=0.2)
clf = LinearRegression(n_jobs=-1)
clf.fit(X_train, y_train)
confidence = clf.score(X_test, y_test)

forecast_set = clf.predict(X_lately)
df['Forecast'] = np.nan

last_date = df.iloc[-1].name
last_unix = last_date.timestamp()
one_day = 86400
next_unix = last_unix + one_day

for i in forecast_set:
    next_date = datetime.datetime.fromtimestamp(next_unix)
    next_unix += 86400
    df.loc[next_date] = [np.nan for _ in range(len(df.columns)-1)]+[i]

df['Adj. Close'].plot()
df['Forecast'].plot()
plt.legend(loc=4)
plt.xlabel('Date')
plt.ylabel('Price')
plt.show()

如果按3.7的方式运行此代码,则会得到一些与SKlearn相关的错误,我已经能够从SO的建议中解决这些错误,但是一旦我处理了这些错误,我将得到如下错误

H:\Documents\Python Scripts>py ML_tutorial_vid_5.1.py
Traceback (most recent call last):
  File "ML_tutorial_vid_5.1.py", line 34, in <module>
    X_train, X_test, y_train, y_test = cross_validate.train_test_split(X, y, 
test_size=0.2)
AttributeError: 'function' object has no attribute 'train_test_split'

感谢所有帮助。

1 个答案:

答案 0 :(得分:1)

您收到此错误,因为train_test_split现在位于model_selection的{​​{1}}模块中。您可以在here上看到更改日志。

您现在可以像这样导入它。

sklearn

并像这样使用它

from sklearn.model_selection import train_test_split