在R中,我有以下示例数据表:
library(data.table)
x <- data.table(Group = c("d1", "d1", "d1", "d1", "d2", "d3", "d3", "d4", "d5", "d5", "d5", "d6", "d7", "d7", "d7", "d7", "d7"))
x[, InternalOrder := seq(.N), by = Group]
看起来像这样:
# Input:
#
Group InternalOrder
1: d1 1
2: d1 2
3: d1 3
4: d1 4
5: d2 1
6: d3 1
7: d3 2
8: d4 1
9: d5 1
10: d5 2
11: d5 3
12: d6 1
13: d7 1
14: d7 2
15: d7 3
16: d7 4
17: d7 5
我的目标是使数据表x中的组顺序随机化,同时保留每个组的内部顺序。
我已经找到了解决方案
groupsizes <- x[, .N, by = Group]$N # Get number of elements (= rows) for each group
set.seed(10)
x[, RandomGroupID := rep(sample(c(1:length(unique(x$Group))), replace = F), groupsizes)] # Make new column with random ID for each group
setorder(x, RandomGroupID, InternalOrder) # Re-order data by random group ID and internal order
提供所需的输出:
# Output (as desired):
Group InternalOrder RandomGroupID
1: d5 1 1
2: d5 2 1
3: d5 3 1
4: d2 1 2
5: d3 1 3
6: d3 2 3
7: d1 1 4
8: d1 2 4
9: d1 3 4
10: d1 4 4
11: d4 1 5
12: d7 1 6
13: d7 2 6
14: d7 3 6
15: d7 4 6
16: d7 5 6
17: d6 1 7
由于我一直在尝试提高数据表的技能,因此我想知道是否有一个更好的,更惯用的解决方案,它不需要创建向量groupsizes
的中间步骤,而是分配了一个新的列将by
参数与.GRP
或.I
等结合使用典型的数据表语法。
我想到过类似x[, RandomGroupIDAlternative := rep(sample(c(1:length(unique(x$Group))), replace = F), .GRP), by = Group]
这样的东西,显然没有不能提供所需的输出。
我期待您的评论,并期待解决此问题的替代解决方案。
答案 0 :(得分:5)
这可以通过加入随机分组列表来惯用地完成。
x[sample(unique(Group)), on = "Group"][, RandomGroupID := .GRP, by = Group][]
答案 1 :(得分:5)
您也可以使用split
和rbindlist
来做到这一点:
x_new <- rbindlist(sample(split(x, by='Group')))
Group InternalOrder
1: d4 1
2: d1 1
3: d1 2
4: d1 3
5: d1 4
6: d5 1
7: d5 2
8: d5 3
9: d6 1
10: d7 1
11: d7 2
12: d7 3
13: d7 4
14: d7 5
15: d3 1
16: d3 2
17: d2 1
答案 2 :(得分:3)
这是一种可能性:
x[, RandomGroupID := runif(1), by = Group ]
x[order(RandomGroupID), RandomGroupID := as.numeric(.GRP), by = Group]
输出:
Group InternalOrder RandomGroupID
1: d1 1 4
2: d1 2 4
3: d1 3 4
4: d1 4 4
5: d2 1 7
6: d3 1 6
7: d3 2 6
8: d4 1 1
9: d5 1 2
10: d5 2 2
11: d5 3 2
12: d6 1 5
13: d7 1 3
14: d7 2 3
15: d7 3 3
16: d7 4 3
17: d7 5 3