我有一个简单的keras模型。保存模型后。我无法加载模型。这是实例化模型并尝试加载权重后得到的错误:
SELECT id, track_id, 1 AS play_count
用于实例化模型并使用model.load_weights进行模型汇总。当我使用print(model)打印模型时,我什么也没得到
Using TensorFlow backend.
Traceback (most recent call last):
File "test.py", line 4, in <module>
model = load_model("test.h5")
File "/usr/lib/python3.7/site-packages/keras/engine/saving.py", line 419, in load_model
model = _deserialize_model(f, custom_objects, compile)
File "/usr/lib/python3.7/site-packages/keras/engine/saving.py", line 258, in _deserialize_model
.format(len(layer_names), len(filtered_layers))
ValueError: You are trying to load a weight file containing 6 layers into a model with 0 layers
这是我的网络:
Traceback (most recent call last):
File "test.py", line 7, in <module>
print(model.summary())
AttributeError: 'NoneType' object has no attribute 'summary'
培训过程脚本:
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, InputLayer, Flatten, Dense, BatchNormalization
def create_model():
kernel_size = 5
pool_size = 2
batchsize = 64
model = Sequential()
model.add(InputLayer((36, 120, 1)))
model.add(Conv2D(filters=20, kernel_size=kernel_size, activation='relu', padding='same'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size))
model.add(Conv2D(filters=50, kernel_size=kernel_size, activation='relu', padding='same'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size))
model.add(Flatten())
model.add(Dense(120, activation='relu'))
model.add(Dense(2, activation='relu'))
return model
答案 0 :(得分:4)
拖放InputLayer
并在第一层使用input_shape
。您的代码将类似于:
model = Sequentional()
model.add(Conv2D(filters=20,..., input_shape=(36, 120, 1)))
似乎带有InputLayer
的模型未正确序列化到HDF5
。
将Tensorflow和Keras升级到最新版本
按照解释的here