如何在Spark结构化流中迭代分组的行以产生多行?

时间:2018-12-31 19:57:37

标签: scala apache-spark spark-streaming etl

我的输入数据集如下:

id     operation          value
1      null                1
1      discard             0
2      null                1
2      null                2
2      max                 0
3      null                1
3      null                1
3      list                0

我想对输入进行分组并根据“操作”列生成行。

对于组1,操作=“丢弃”,则输出为空,

对于组2,操作=“ max”,输出为:

2      null                2

对于组3,操作=“列表”,输出为:

3      null                1
3      null                1

所以最终输出如下:

  id     operation          value
   2      null                2
   3      null                1
   3      null                1

有解决方案吗?

我知道还有一个类似的问题how-to-iterate-grouped-data-in-spark 但是与之相比的区别是:

    1. 我想为每个分组的数据产生多个行。可能 以及如何?
    2. 我希望我的逻辑易于扩展,以便将来增加更多操作。因此,用户定义的聚合函数(又名UDAF)为 唯一可能的解决方案?

更新1:

感谢stack0114106,然后根据他的回答提供更多详细信息,例如对于id = 1,operation =“ max”,我想遍历id = 2的所有项目,并找到最大值,而不是分配硬编码值,这就是为什么我要遍历每组中的行的原因。下面是一个更新的示例:

输入:

scala> val df = Seq((0,null,1),(0,"discard",0),(1,null,1),(1,null,2),(1,"max",0),(2,null,1),(2,null,3),(2,"max",0),(3,null,1),(3,null,1),(3,"list",0)).toDF("id"
,"operation","value")
df: org.apache.spark.sql.DataFrame = [id: int, operation: string ... 1 more field]

scala> df.show(false)
+---+---------+-----+
|id |operation|value|
+---+---------+-----+
|0  |null     |1    |
|0  |discard  |0    |
|1  |null     |1    |
|1  |null     |2    |
|1  |max      |0    |
|2  |null     |1    |
|2  |null     |3    |
|2  |max      |0    |
|3  |null     |1    |
|3  |null     |1    |
|3  |list     |0    |
+---+---------+-----+

预期输出:

+---+---------+-----+
|id |operation|value|
+---+---------+-----+
|1  |null     |2    |
|2  |null     |3    |
|3  |null     |1    |
|3  |null     |1    |
+---+---------+-----+

2 个答案:

答案 0 :(得分:1)

将收集值的所有内容分组,然后为每个操作编写逻辑:

import org.apache.spark.sql.functions._
val grouped=df.groupBy($"id").agg(max($"operation").as("op"),collect_list($"value").as("vals"))
val maxs=grouped.filter($"op"==="max").withColumn("val",explode($"vals")).groupBy($"id").agg(max("val").as("value"))
val lists=grouped.filter($"op"==="list").withColumn("value",explode($"vals")).filter($"value"!==0).select($"id",$"value")
//we don't collect the "discard"
//and we can add additional subsets for new "operations"
val result=maxs.union(lists)
//if you need the null in "operation" column add it with withColumn

答案 1 :(得分:0)

您可以在数据框上使用flatMap操作,并根据您提到的条件生成所需的行。检查一下

scala> val df = Seq((1,null,1),(1,"discard",0),(2,null,1),(2,null,2),(2,"max",0),(3,null,1),(3,null,1),(3,"list",0)).toDF("id","operation","value")
df: org.apache.spark.sql.DataFrame = [id: int, operation: string ... 1 more field]

scala> df.show(false)
+---+---------+-----+
|id |operation|value|
+---+---------+-----+
|1  |null     |1    |
|1  |discard  |0    |
|2  |null     |1    |
|2  |null     |2    |
|2  |max      |0    |
|3  |null     |1    |
|3  |null     |1    |
|3  |list     |0    |
+---+---------+-----+


scala> df.filter("operation is not null").flatMap( r=> { val x=r.getString(1); val s = x match { case "discard" => (0,0) case "max" => (1,2) case "list" => (2,1) } ; (0
 until s._1).map( i => (r.getInt(0),null,s._2) ) }).show(false)
+---+----+---+
|_1 |_2  |_3 |
+---+----+---+
|2  |null|2  |
|3  |null|1  |
|3  |null|1  |
+---+----+---+

Spark分配了_1,_2等。因此,您可以通过如下分配它们来将它们映射为实际名称

scala> val df2 = df.filter("operation is not null").flatMap( r=> { val x=r.getString(1); val s = x match { case "discard" => (0,0) case "max" => (1,2) case "list" => (2,1) } ; (0 until s._1).map( i => (r.getInt(0),null,s._2) ) }).toDF("id","operation","value")
df2: org.apache.spark.sql.DataFrame = [id: int, operation: null ... 1 more field]

scala> df2.show(false)
+---+---------+-----+
|id |operation|value|
+---+---------+-----+
|2  |null     |2    |
|3  |null     |1    |
|3  |null     |1    |
+---+---------+-----+


scala>

EDIT1:

由于每个ID都需要max(value),因此可以使用窗口函数并在新列中获取最大值,然后使用相同的技术并获取结果。检查一下

scala> val df =   Seq((0,null,1),(0,"discard",0),(1,null,1),(1,null,2),(1,"max",0),(2,null,1),(2,null,3),(2,"max",0),(3,null,1),(3,null,1),(3,"list",0)).toDF("id","operation","value")
df: org.apache.spark.sql.DataFrame = [id: int, operation: string ... 1 more field]

scala> df.createOrReplaceTempView("michael")

scala> val df2 = spark.sql(""" select *, max(value) over(partition by id) mx from michael """)
df2: org.apache.spark.sql.DataFrame = [id: int, operation: string ... 2 more fields]

scala> df2.show(false)
+---+---------+-----+---+
|id |operation|value|mx |
+---+---------+-----+---+
|1  |null     |1    |2  |
|1  |null     |2    |2  |
|1  |max      |0    |2  |
|3  |null     |1    |1  |
|3  |null     |1    |1  |
|3  |list     |0    |1  |
|2  |null     |1    |3  |
|2  |null     |3    |3  |
|2  |max      |0    |3  |
|0  |null     |1    |1  |
|0  |discard  |0    |1  |
+---+---------+-----+---+


scala> val df3 = df2.filter("operation is not null").flatMap( r=> { val x=r.getString(1); val s = x match { case "discard" => 0 case "max" => 1 case "list" => 2 } ; (0 until s).map( i => (r.getInt(0),null,r.getInt(3) )) }).toDF("id","operation","value")
df3: org.apache.spark.sql.DataFrame = [id: int, operation: null ... 1 more field]


scala> df3.show(false)
+---+---------+-----+
|id |operation|value|
+---+---------+-----+
|1  |null     |2    |
|3  |null     |1    |
|3  |null     |1    |
|2  |null     |3    |
+---+---------+-----+


scala>