类型double和DenseVector [Double]中的错误

时间:2018-12-31 15:46:23

标签: scala apache-spark scala-breeze mahalanobis

以下代码是此问题的答案:Anomaly detection with PCA in Spark

import breeze.linalg.{DenseVector, inv}
import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.feature.{PCA, StandardScaler,VectorAssembler}
import org.apache.spark.ml.linalg.{Matrix, Vector}
import org.apache.spark.ml.stat.Correlation
import org.apache.spark.sql.{DataFrame, Row, SparkSession}
import org.apache.spark.sql.functions._

object SparkApp extends App {
  val session = SparkSession.builder()
    .appName("spark-app").master("local[*]").getOrCreate()
  session.sparkContext.setLogLevel("ERROR")
  import session.implicits._

  val df = Seq(
    (1, 4, 0),
    (3, 4, 0),
    (1, 3, 0),
    (3, 3, 0),
    (67, 37, 0) //outlier
  ).toDF("x", "y", "z")
  val vectorAssembler = new VectorAssembler().setInputCols(Array("x", "y", "z")).setOutputCol("vector")
  val standardScalar = new         StandardScaler().setInputCol("vector").setOutputCol("normalized-    vector").setWithMean(true)
    .setWithStd(true)

  val pca = new PCA().setInputCol("normalized-vector").setOutputCol("pca-features").setK(2)

  val pipeline = new Pipeline().setStages(
Array(vectorAssembler, standardScalar, pca)
  )

  val pcaDF = pipeline.fit(df).transform(df)

  def withMahalanobois(df: DataFrame, inputCol: String): DataFrame = {
    val Row(coeff1: Matrix) = Correlation.corr(df, inputCol).head

    val invCovariance = inv(new breeze.linalg.DenseMatrix(2, 2, coeff1.toArray))

    val mahalanobois = udf[Double, Vector] { v =>
      val vB = DenseVector(v.toArray)
      vB.t * invCovariance * vB
    }

    df.withColumn("mahalanobois", mahalanobois(df(inputCol)))
  }

  val withMahalanobois: DataFrame = withMahalanobois(pcaDF, "pca-features")

  session.close()
}

但是当我尝试运行它时,它会挤在这一行:

vB.t * invCovariance * vB

错误消息: 类型不匹配:找到breeze.linalg.DenseVector [Double],必填:Double

我该如何解决?

0 个答案:

没有答案