我正在使用python 3.6进行深度学习。我正在尝试进行网格搜索。我的代码是
def build_Class():
model=keras.models.Sequential()
model.add(Dropout(0.5, input_shape=(136,)))
model.add(keras.layers.Dense(10,init='uniform',activation='sigmoid'))
model.add(keras.layers.Dense(10,init='uniform',activation='relu'))
model.add(keras.layers.Dense(1,init='uniform',activation='sigmoid'))
model.compile(loss=rmsle,optimizer=optimizer,metrics=['accuracy']) # Need to check with 10 K
return model
from keras.wrappers.scikit_learn import KerasClassifier
from sklearn.model_selection import GridSearchCV
classifier=KerasClassifier(build_fn=build_Class)
parameter={'batch_size':[10,25,32],'nb_epoch':[100,500],
'optimizer':['adam','rmsprop']}
grid_search=GridSearchCV(estimator=classifier,param_grid=parameter,scoring='accuracy',cv=10)
grid_search=grid_search.fit(x,y)
我遇到以下错误
ValueError Traceback (most recent call last)
<ipython-input-36-5a9be9c02d0d> in <module>()
----> 1 grid_search=grid_search.fit(x,y)
/usr/local/lib/python3.6/dist-packages/sklearn/model_selection/_search.py in fit(self, X, y, groups, **fit_params)
720 return results_container[0]
721
--> 722 self._run_search(evaluate_candidates)
723
724 results = results_container[0]
/usr/local/lib/python3.6/dist-packages/sklearn/model_selection/_search.py in _run_search(self, evaluate_candidates)
1189 def _run_search(self, evaluate_candidates):
1190 """Search all candidates in param_grid"""
-> 1191 evaluate_candidates(ParameterGrid(self.param_grid))
1192
1193
/usr/local/lib/python3.6/dist-packages/sklearn/model_selection/_search.py in evaluate_candidates(candidate_params)
709 for parameters, (train, test)
710 in product(candidate_params,
--> 711 cv.split(X, y, groups)))
712
713 all_candidate_params.extend(candidate_params)
我的样本x和y看起来像
x
> 361 0.000000 0.000000 0.007459 0.000000 0.00000 0.000000 0.014979 0.00000 0.000000 0.000000 ... 0.071562 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
> 4042 0.000078 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.00000 0.000000 0.000000 ... 0.016101 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
> 3353 0.129063 0.000000 0.178565 0.000000 0.40000 0.000000 0.000000 0.00000 0.000000 0.202589 ... 0.510517 0.00000 0.178565 0.000000 0.178565 0.000000 0.202589 0.000000 0.000000 0.178565
> 1947 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.02981 0.000000 0.000000 ... 0.112531 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.011040 0.000000 0.000000
> 779 0.000000 0.000000 0.006258 0.000000 0.00000 0.000000 0.000000 0.00000 0.000000 0.000000 ... 0.020574 0.00000 0.007388 0.005000 0.014518 0.000000 0.031288 0.000000 0.000000 0.006258
> 3439 0.000000 0.001797 0.000000 0.000000 0.00000 0.000000 0.000000 0.00000 0.000000 0.000000 ... 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.003129
> 890 0.000000 0.000000 0.000000 0.000000 0.00000 0.150000 0.008268 0.00000 0.000000 0.000626 ... 0.000000 0.00000 0.006258 0.006667 0.000626 0.000000 0.014080 0.000000 0.000000 0.000751
> 1270 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.00000 0.000000 0.000000 ... 0.053671 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
> 796 0.000000 0.000000 0.000219 0.000000 0.00000 0.000000 0.000000 0.00000 0.000000 0.000000 ... 0.000000 0.00000 0.000219 0.000000 0.000219 0.000000 0.000000 0.000000 0.000000 0.000219
> 4443 0.007361 0.002239 0.001721 0.000000 0.02940 0.164667 0.004414 0.00334 0.001050 0.003650 ... 0.013217 0.01068 0.004892 0.000000 0.004892 0.000000 0.003650 0.019708 0.000418 0.003176
y
> target 211 0.006755 1790 0.001001 3364 0.099324 1811 0.000250
> 4377 0.020624
您能建议我为消除此错误而需要做哪些更改?