Python泡菜无法在烧瓶Web应用程序中加载文件,AttributeError:模型'__main__'没有属性

时间:2018-12-29 13:30:11

标签: python flask scikit-learn pickle wsgi

我有一个flask Web应用程序,需要加载scikit-learn模型。该模型由名为build_model的函数创建,并由名为classifier1.pkl的函数保存到pickle文件调用save_model中。这两个函数都在train_classifier.py python文件中。以下是此python文件的内容:

# import .....

def load_data(database_filepath):
    '''
    Load the cleaned dataset.
    ......
    '''

def tokenize(text):
    '''
    Convert given text into tokens.
    '''

    tokens = word_tokenize(text)
    lemmatizer = WordNetLemmatizer()

    clean_tokens = []
    for tok in tokens:
        clean_tok = lemmatizer.lemmatize(tok).lower().strip()
        clean_tokens.append(clean_tok)

    return clean_tokens


def build_model():
    '''
    Construct a scikit-learn pipeline and use GridSearchCV method to
    tune the pipelines hyperparameters.

    return:
        model: The scikit-learn pipeline model.
    '''
    pipeline = Pipeline([
        ('vect', CountVectorizer(tokenizer=tokenize)),
        ('tfidf', TfidfTransformer()),
        ('clf', MultiOutputClassifier(RandomForestClassifier()))
    ])

    parameters = {
        'vect__ngram_range': ((1, 1), (1, 2)),
        'vect__max_df': (0.5, 0.75, 1.0),
        'vect__max_features': (None, 5000),
        'tfidf__use_idf': (True, False),
        'clf__estimator__n_estimators': [10, 20],
        'clf__estimator__min_samples_split': [2, 3]
    }

    model = GridSearchCV(pipeline, param_grid=parameters,
                      verbose=2, return_train_score=False, n_jobs=5)

    return model

def evaluate_model(model, X_test, Y_test, category_names):
    '''
    Use model to perform predictions

    input:
        model: Model using to perform predictions.
        X_test: Test messages.
        Y_test: True values of the categories for corresponding messages.
        category_names: the name of each category
    '''
    Y_pred = model.predict(X_test)
    print(classification_report(Y_test, Y_pred, target_names= category_names))


def save_model(model, model_filepath):
    '''
    Save the model in a pickle file.

    input:
        model: Model to be saved.
        model_filepath: the file path of the saved model.
    '''
    with open(model_filepath, 'wb') as f:
        pickle.dump(model, f)


def main():
    if len(sys.argv) == 3:
        database_filepath, model_filepath = sys.argv[1:]
        print('Loading data...\n    DATABASE: {}'.format(database_filepath))
        X, Y, category_names = load_data(database_filepath)
        X_train, X_test, Y_train, Y_test = train_test_split(
            X, Y, test_size=0.2)

        print('Building model...')
        model = build_model()

        print('Training model...')
        model.fit(X_train, Y_train)

        print('Evaluating model...')
        evaluate_model(model, X_test, Y_test, category_names)

        print('Saving model...\n    MODEL: {}'.format(model_filepath))
        save_model(model, model_filepath)

        print('Trained model saved!')

    else:
        print('Please provide the filepath of the disaster messages database '
              'as the first argument and the filepath of the pickle file to '
              'save the model to as the second argument. \n\nExample: python '
              'train_classifier.py ../data/DisasterResponse.db classifier.pkl')


if __name__ == '__main__':
    main()

build_model()函数构造的模型是一个scikit学习pipeline对象,该对象使用tokenize(text)函数作为输入。然后对模型进行训练和评估,最后将模型保存到pickle文件中。

问题是当我的应用程序脚本在Heroku上加载classifier1.pkl文件时,它显示一条 AttributeError 消息。我在本地控制台中测试了代码,它运行无误。

下面是Heroku平台的日志。

Traceback (most recent call last):
2018-12-29T12:14:09.796947+00:00 app[web.1]: File "/app/.heroku/python/lib/python3.6/site-packages/gunicorn/arbiter.py", line 583, in spawn_worker
2018-12-29T12:14:09.796949+00:00 app[web.1]: worker.init_process()
2018-12-29T12:14:09.796951+00:00 app[web.1]: File "/app/.heroku/python/lib/python3.6/site-packages/gunicorn/workers/base.py", line 129, in init_process
2018-12-29T12:14:09.796952+00:00 app[web.1]: self.load_wsgi()
2018-12-29T12:14:09.796954+00:00 app[web.1]: File "/app/.heroku/python/lib/python3.6/site-packages/gunicorn/workers/base.py", line 138, in load_wsgi
2018-12-29T12:14:09.796955+00:00 app[web.1]: self.wsgi = self.app.wsgi()
2018-12-29T12:14:09.796958+00:00 app[web.1]: File "/app/.heroku/python/lib/python3.6/site-packages/gunicorn/app/base.py", line 67, in wsgi
2018-12-29T12:14:09.796960+00:00 app[web.1]: self.callable = self.load()
2018-12-29T12:14:09.796961+00:00 app[web.1]: File "/app/.heroku/python/lib/python3.6/site-packages/gunicorn/app/wsgiapp.py", line 52, in load
2018-12-29T12:14:09.796963+00:00 app[web.1]: return self.load_wsgiapp()
2018-12-29T12:14:09.796965+00:00 app[web.1]: File "/app/.heroku/python/lib/python3.6/site-packages/gunicorn/app/wsgiapp.py", line 41, in load_wsgiapp
2018-12-29T12:14:09.796967+00:00 app[web.1]: return util.import_app(self.app_uri)
2018-12-29T12:14:09.796969+00:00 app[web.1]: File "/app/.heroku/python/lib/python3.6/site-packages/gunicorn/util.py", line 350, in import_app
2018-12-29T12:14:09.796970+00:00 app[web.1]: __import__(module)
2018-12-29T12:14:09.796972+00:00 app[web.1]: File "/app/app/application.py", line 37, in <module>
2018-12-29T12:14:09.796974+00:00 app[web.1]: model = joblib.load("models/classifier1.pkl")
2018-12-29T12:14:09.796976+00:00 app[web.1]: File "/app/.heroku/python/lib/python3.6/site-packages/sklearn/externals/joblib/numpy_pickle.py", line 598, in load
2018-12-29T12:14:09.796977+00:00 app[web.1]: obj = _unpickle(fobj, filename, mmap_mode)
2018-12-29T12:14:09.796979+00:00 app[web.1]: File "/app/.heroku/python/lib/python3.6/site-packages/sklearn/externals/joblib/numpy_pickle.py", line 526, in _unpickle
2018-12-29T12:14:09.796980+00:00 app[web.1]: obj = unpickler.load()
2018-12-29T12:14:09.796982+00:00 app[web.1]: File "/app/.heroku/python/lib/python3.6/pickle.py", line 1050, in load
2018-12-29T12:14:09.796984+00:00 app[web.1]: dispatch[key[0]](self)
2018-12-29T12:14:09.796986+00:00 app[web.1]: File "/app/.heroku/python/lib/python3.6/pickle.py", line 1338, in load_global
2018-12-29T12:14:09.796987+00:00 app[web.1]: klass = self.find_class(module, name)
2018-12-29T12:14:09.796989+00:00 app[web.1]: File "/app/.heroku/python/lib/python3.6/pickle.py", line 1392, in find_class
2018-12-29T12:14:09.796990+00:00 app[web.1]: return getattr(sys.modules[module], name)
2018-12-29T12:14:09.797163+00:00 app[web.1]: AttributeError: module '__main__' has no attribute 'tokenize'

我的应用程序脚本的内容是:

#import ...  

app = Flask(__name__)

def tokenize(text):
    tokens = word_tokenize(text)
    lemmatizer = WordNetLemmatizer()

    clean_tokens = []
    for tok in tokens:
        clean_tok = lemmatizer.lemmatize(tok).lower().strip()
        clean_tokens.append(clean_tok)

    return clean_tokens

# load data
engine = create_engine('sqlite:///data/DisasterResponse.db')
df = pd.read_sql_table('ResponseCategory', engine)

# load model
with open("models/classifier1.pkl", 'rb') as f:
        model = pickle.load(f)

@app.route('/')
@app.route('/index')
def index():

    # extract data needed for visuals

    genre_counts = df.groupby('genre').count()['message']
    genre_names = list(genre_counts.index)

    cate_counts = df[df.columns[-36:]].sum()
    cate_names = list(df.columns[-36:])

    # create visuals

    graphs = [
        {
            'data': [
                Bar(
                    x=genre_names,
                    y=genre_counts
                )
            ],

            'layout': {
                'title': 'Distribution of Message Genres',
                'yaxis': {
                    'title': "Count"
                },
                'xaxis': {
                    'title': "Genre"
                }
            }
        }

    ]

    # encode plotly graphs in JSON
    ids = ["graph-{}".format(i) for i, _ in enumerate(graphs)]
    graphJSON = json.dumps(graphs, cls=plotly.utils.PlotlyJSONEncoder)

    # render web page with plotly graphs
    return render_template('master.html', ids=ids, graphJSON=graphJSON)


# web page that handles user query and displays model results

@app.route('/go')
def go():
    # save user input in query
    query = request.args.get('query', '') 

    # use model to predict classification for query
    classification_labels = model.predict([query])[0]
    classification_results = dict(zip(df.columns[4:], classification_labels))

    # This will render the go.html Please see that file. 
    return render_template(
        'go.html',
        query=query,
        classification_result=classification_results
    )


if __name__ == '__main__':
    app.run()

The sturcture of my project folder

我的操作系统是Ubuntu 18.04,Python版本是3.6.7。

0 个答案:

没有答案