在阅读了很多带有“样本数量不一致”错误的示例之后,我仍然看不到我的代码有什么问题。
在一个excel文件中,工作表1包含数据。表格2列出了变量列表。
我将工作表2中的变量保存到一个数组中。并将其输入随机森林模型以评估其对工作表1中参数的影响。
但是我得到的是“找到的输入变量样本数量不一致:[54,2016]”
54是工作表2中的变量数。 2016是工作表1中的数据行数。
我试图查看这54个变量如何影响工作表1中的“目标”变量。
我应该如何处理我的数据以使其正常工作?
非常感谢。
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_selection import SelectFromModel
from sklearn.metrics import accuracy_score
df = pd.read_excel(r'C:\Users\ngks\Desktop\TP Course\Project Module\ProjectDataSetrev2.xlsx',sheet_name=0)
df2 = pd.read_excel(r'C:\Users\ngks\Desktop\TP Course\Project Module\ProjectDataSetrev2.xlsx',sheet_name=1)
df['DateTime']=pd.to_datetime(df['Time Stamp'], format='%Y-%m-%d %H:%M:%S')
df.set_index(df['DateTime'], inplace=True)
print(len(df2.columns))
allvar = list()
for each_var in df2.columns:
allvar.append(each_var)
allvar = np.array(allvar)
print(allvar)
target = df['(CUP) Chiller Optimization Plant Efficiency [kW/RT]']
target=target.values.reshape(len(target),1)
allvar_train,allvar_test,target_train,target_test= train_test_split(allvar,target, random_state=0, test_size=0.6)
clf = RandomForestClassifier(n_estimators=10000, random_state=0, n_jobs=-1)
clf.fit(allvar_train, target_train)
for feature in zip(feat_labels, clf.feature_importances_):
print(feature)
第1张(保存为df)如下所示 Sheet 1
第2张(保存为df2)看起来像这样 Sheet2
错误日志如下所示 Error log
错误日志2:未知标签类型:“连续” Error Log 2
答案 0 :(得分:1)
问题出在“ train_test_spilt”上,您只传递要素列名称而不传递数据。像这样使用列列表从DataFrame获取数据。
allvar_train,allvar_test,target_train,target_test= train_test_split(df[allvar],target, random_state=0, test_size=0.6)
您不一定需要将'allvar'和'target'转换为numpy数组,它可以直接在'train_test_split'中使用。
注意:此问题与随机森林无关
答案 1 :(得分:-1)
这是对我有用的代码。
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_selection import SelectFromModel
from sklearn.metrics import accuracy_score
df = pd.read_excel(r'C:\Users\ngks\Desktop\TP Course\Project Module\ProjectDataSetrev3.xlsx',sheet_name=0)
df2 = pd.read_excel(r'C:\Users\ngks\Desktop\TP Course\Project Module\ProjectDataSetrev3.xlsx',sheet_name=1)
df['DateTime']=pd.to_datetime(df['Time Stamp'], format='%Y-%m-%d %H:%M:%S')
df.set_index(df['DateTime'], inplace=True)
print(len(df2.columns))
allvarlist = list()
for each_var in df2.columns:
allvarlist.append(each_var)
countvar = len(allvarlist)
allvar = df[allvarlist]
allvar = allvar.values.reshape(len(allvar),countvar)
target = df['(CUP) Chiller Optimization Plant Efficiency [kW/RT]']
target=target.values.reshape(len(target),1)
allvar_train,allvar_test,target_train,target_test= train_test_split(allvar,target, random_state=0, test_size=0.7)
clf = RandomForestRegressor(n_estimators=10000, random_state=0, n_jobs=-1)
#print(allvar_train)
#print(target_train)
clf.fit(allvar_train,np.ravel(target_train))
for feature in zip(allvarlist, clf.feature_importances_):
print(feature)
importances = clf.feature_importances_
#indices = np.argsort(importances)
plt.figure().set_size_inches(14,16)
plt.barh(range(allvar_train.shape[1]), importances, color="r")
plt.yticks(range(allvar_train.shape[1]),allvarlist)