我有以下数据框:
import pandas as pd
import numpy as np
data = {
"index": [1, 2, 3, 4, 5],
"A": [11, 17, 5, 9, 10],
"B": [8, 6, 16, 17, 9],
"C": [10, 17, 12, 13, 15],
"target": [12, 13, 8, 6, 12]
}
df = pd.DataFrame.from_dict(data)
print(df)
我想在A,B和C列中找到最接近列目标的值,并将这些值放入列结果中。据我所知,我需要使用abs()和argmin()函数。 这是我期望的输出:
index A B C target result
0 1 11 8 10 12 11
1 2 17 6 17 13 17
2 3 5 16 12 8 5
3 4 9 17 13 6 9
4 5 10 9 15 12 10
这是解决方案,它链接了我从stackoverflow中发现的内容,这可能会有所帮助:
(df.assign(closest=df.apply(lambda x: x.abs().argmin(), axis='columns'))
.apply(lambda x: x[x['target']], axis='columns'))
Identifying closest value in a column for each filter using Pandas https://codereview.stackexchange.com/questions/204549/lookup-closest-value-in-pandas-dataframe
答案 0 :(得分:5)
从其他列中减去“目标”,使用idxmin
获得具有最小差异的列,然后是lookup
:
idx = df.drop(['index', 'target'], 1).sub(df.target, axis=0).abs().idxmin(1)
df['result'] = df.lookup(df.index, idx)
df
index A B C target result
0 1 11 8 10 12 11
1 2 17 6 17 13 17
2 3 5 16 12 8 5
3 4 9 17 13 6 9
4 5 10 9 15 12 10
处理字符串列和NaN的常规解决方案(以及您将目标中的NaN值替换为“ v1”中的值的要求):
df2 = df.select_dtypes(include=[np.number])
idx = df2.drop(['index', 'target'], 1).sub(df2.target, axis=0).abs().idxmin(1)
df['result'] = df2.lookup(df2.index, idx.fillna('v1'))
您还可以通过使用df.columns.get_indexer
获取整数索引来索引基础的NumPy数组。
# idx = df[['A', 'B', 'C']].sub(df.target, axis=0).abs().idxmin(1)
idx = df.drop(['index', 'target'], 1).sub(df.target, axis=0).abs().idxmin(1)
# df['result'] = df.values[np.arange(len(df)), df.columns.get_indexer(idx)]
df['result'] = df.values[df.index, df.columns.get_indexer(idx)]
df
index A B C target result
0 1 11 8 10 12 11
1 2 17 6 17 13 17
2 3 5 16 12 8 5
3 4 9 17 13 6 9
4 5 10 9 15 12 10
答案 1 :(得分:5)
您可以将NumPy 位置整数索引与argmin
一起使用:
col_lst = list('ABC')
col_indices = df[col_lst].sub(df['target'], axis=0).abs().values.argmin(1)
df['result'] = df[col_lst].values[np.arange(len(df.index)), col_indices]
col_labels = df[list('ABC')].sub(df['target'], axis=0).abs().idxmin(1)
df['result'] = df.lookup(df.index, col_labels)
print(df)
index A B C target result
0 1 11 8 10 12 11
1 2 17 6 17 13 17
2 3 5 16 12 8 5
3 4 9 17 13 6 9
4 5 10 9 15 12 10
原理是相同的,尽管对于较大的数据帧,您可能会发现NumPy更有效:
# Python 3.7, NumPy 1.14.3, Pandas 0.23.0
def np_lookup(df):
col_indices = df[list('ABC')].sub(df['target'], axis=0).abs().values.argmin(1)
df['result'] = df[list('ABC')].values[np.arange(len(df.index)), col_indices]
return df
def pd_lookup(df):
col_labels = df[list('ABC')].sub(df['target'], axis=0).abs().idxmin(1)
df['result'] = df.lookup(df.index, col_labels)
return df
df = pd.concat([df]*10**4, ignore_index=True)
assert df.pipe(pd_lookup).equals(df.pipe(np_lookup))
%timeit df.pipe(np_lookup) # 7.09 ms
%timeit df.pipe(pd_lookup) # 67.8 ms