我正在尝试通过使用数据增强来提高将Xception用作预训练模型的转移学习模型的性能。目标是对狗的品种进行分类。 train_tensors
和valid_tensors
分别以numpy数组包含训练图像和测试图像。
from keras.applications.xception import Xception
model = Xception(include_top = False, weights = "imagenet")
datagen = ImageDataGenerator(zoom_range=0.2,
horizontal_flip=True,
width_shift_range = 0.2,
height_shift_range = 0.2,
fill_mode = 'nearest',
rotation_range = 45)
batch_size = 32
bottleneck_train = model.predict_generator(datagen.flow(train_tensors,
train_targets,
batch_size = batch_size),
train_tensors.shape[0]// batch_size)
bottleneck_valid = model.predict_generator(datagen.flow(valid_tensors,
valid_targets,
batch_size = batch_size),
test_tensors.shape[0]//batch_size)
print(train_tensors.shape)
print(bottleneck_train.shape)
print(valid_tensors.shape)
print(bottleneck_valid.shape)
但是,最后4行的输出是:
(6680, 224, 224, 3)
(6656, 7, 7, 2048)
(835, 224, 224, 3)
(832, 7, 7, 2048)
predict_generator函数返回的样本数量与其提供的样本数量有所不同。是否跳过或遗漏了样本?
答案 0 :(得分:1)
是的,一些样本被排除在外了,这是因为6680和835不能精确地除以32(您的批次大小),您可以调整批次大小,以便将其精确地除以两个数字。
或者您可以通过使用math.ceil
python函数来调整代码,使其包含另外一批(大小会稍小):
import math
bottleneck_train = model.predict_generator(datagen.flow(train_tensors,
train_targets,
batch_size = batch_size),
math.ceil(train_tensors.shape[0] / batch_size))
bottleneck_valid = model.predict_generator(datagen.flow(valid_tensors,
valid_targets,
batch_size = batch_size),
math.ceil(test_tensors.shape[0] /batch_size))