我有一个如下所示的数据框
+------------+------+
| food|pounds|
+------------+------+
| bacon| 4.0|
|STRAWBERRIES| 3.5|
| Bacon| 7.0|
|STRAWBERRIES| 3.0|
| BACON| 6.0|
|strawberries| 9.0|
|Strawberries| 1.0|
| pecans| 3.0|
+------------+------+
预期输出为
+------------+------+---------+
| food|pounds|food_type|
+------------+------+---------+
| bacon| 4.0| meat|
|STRAWBERRIES| 3.5| fruit|
| Bacon| 7.0| meat|
|STRAWBERRIES| 3.0| fruit|
| BACON| 6.0| meat|
|strawberries| 9.0| fruit|
|Strawberries| 1.0| fruit|
| pecans| 3.0| other|
+------------+------+---------+
因此,我基本上根据我的逻辑定义了一个new_column并将其应用于.withcolumn
new_column = when((col('food') == 'bacon') | (col('food') == 'BACON') | (col('food') == 'Bacon'), 'meat'
).when((col('food') == 'STRAWBERRIES') | (col('food') == 'strawberries') | (col('food') == 'Strawberries'), 'fruit'
).otherwise('other')
然后
df.withColumn("food_type", new_column).show()
哪个工作正常。但是我想用更少的代码更新new_column
语句,因此重写如下所示:
new_column = when(lower(col('food') == 'bacon') , 'meat'
).when(lower(col('food') == 'strawberries'), 'fruit'
).otherwise('other')
现在,当我做df.withColumn("food_type", new_column).show()
我收到错误
AnalysisException: "cannot resolve 'CASE WHEN lower(CAST((`food` = 'bacon') AS STRING)) THEN 'meat' WHEN lower(CAST((`food` = 'strawberries') AS STRING)) THEN 'fruit' ELSE 'other' END' due to data type mismatch: WHEN expressions in CaseWhen should all be boolean type, but the 1th when expression's type is lower(cast((food#165 = bacon) as string));;\n'Project [food#165, pounds#166, CASE WHEN lower(cast((food#165 = bacon) as string)) THEN meat WHEN lower(cast((food#165 = strawberries) as string)) THEN fruit ELSE other END AS food_type#197]\n+- Relation[food#165,pounds#166] csv\n"
我想念什么?
答案 0 :(得分:2)
您的括号不匹配。
new_column = when(lower(col('food')) == 'bacon' , 'meat').when(lower(col('food')) == 'strawberries', 'fruit').otherwise('other')
答案 1 :(得分:2)
我想分享另一种方法,该方法与SQL查询更相似,并且对于更复杂和嵌套的条件也可能更合适。
from pyspark.sql.functions import *
cond = """case when lower(food) in ('bacon') then 'meat'
else case when lower(food) in ('strawberries') then 'fruit'
else 'other'
end
end"""
newdf = df.withColumn("food_type", expr(cond))
希望有帮助。
此致
Neeraj
答案 2 :(得分:0)
简化:
new_column = when(lower(col(“ food”))==“ bacon”,'meat')。when(lower(col(“ food”))=='strawberries','fruit')。otherwise (“其他”)
df.withColumn(“ food_type”,new_column).show()