我有一个带有DatetimeIndex
的数据框,我想找到每个窗口的最大元素。但是我也必须知道元素的索引。
示例数据:
data = pd.DataFrame(
index=pd.date_range(start=pd.to_datetime('2010-10-10 12:00:00'),
periods=10, freq='H'),
data={'value': [3, 2, 1, 0, 5, 1, 1, 1, 1, 1]}
)
如果我使用max滚动,则会丢失索引:
data.rolling(3).max()
退出:
value
2010-10-10 12:00:00 NaN
2010-10-10 13:00:00 NaN
2010-10-10 14:00:00 3.0
2010-10-10 15:00:00 2.0
2010-10-10 16:00:00 5.0
2010-10-10 17:00:00 5.0
2010-10-10 18:00:00 5.0
2010-10-10 19:00:00 1.0
2010-10-10 20:00:00 1.0
2010-10-10 21:00:00 1.0
如果我尝试使用argmax,则会在每个窗口中将索引作为整数索引(但是我必须找到源日期时间索引或仅整数索引才能使源数据帧能够使用iloc
找到它们:
data.rolling(3).apply(lambda x: x.argmax())
退出:
value
2010-10-10 12:00:00 NaN
2010-10-10 13:00:00 NaN
2010-10-10 14:00:00 0.0
2010-10-10 15:00:00 0.0
2010-10-10 16:00:00 2.0
2010-10-10 17:00:00 1.0
2010-10-10 18:00:00 0.0
2010-10-10 19:00:00 0.0
2010-10-10 20:00:00 0.0
2010-10-10 21:00:00 0.0
有人可以帮我在熊猫中找到良好的功能/参数吗?
我当然可以像这样使用for
pd.DataFrame([{'value_max': data[ind: ind + window][target_var].max(),
'source_index': data[ind: ind + window].index[data[ind: ind + window][target_var].values.argmax()]
} for ind in range(1, len(data) + 1 - window)],
index=data.index[1:-window+1])
它有效。但我想尝试用熊猫找到更优雅的解决方案。
所需的输出:
source_index value_max
2010-10-10 13:00:00 2010-10-10 13:00:00 2
2010-10-10 14:00:00 2010-10-10 16:00:00 5
2010-10-10 15:00:00 2010-10-10 16:00:00 5
2010-10-10 16:00:00 2010-10-10 16:00:00 5
2010-10-10 17:00:00 2010-10-10 17:00:00 1
2010-10-10 18:00:00 2010-10-10 18:00:00 1
2010-10-10 19:00:00 2010-10-10 19:00:00 1
答案 0 :(得分:3)
将Resampler.agg
与自定义功能一起使用,因为resampler
尚未实现idxmax
:
def idx(x):
return x.index.values[np.argmax(x.values)]
df = data['value'].rolling(3).agg(['max', idx])
df['idx'] = pd.to_datetime(df['idx'])
print (df)
max idx
2010-10-10 12:00:00 NaN NaT
2010-10-10 13:00:00 NaN NaT
2010-10-10 14:00:00 3.0 2010-10-10 12:00:00
2010-10-10 15:00:00 2.0 2010-10-10 13:00:00
2010-10-10 16:00:00 5.0 2010-10-10 16:00:00
2010-10-10 17:00:00 5.0 2010-10-10 16:00:00
2010-10-10 18:00:00 5.0 2010-10-10 16:00:00
2010-10-10 19:00:00 1.0 2010-10-10 17:00:00
2010-10-10 20:00:00 1.0 2010-10-10 18:00:00
2010-10-10 21:00:00 1.0 2010-10-10 19:00:00
谢谢@Sandeep Kadapa改善解决方案:
def idx(x):
return x.idxmax().to_datetime64()