在先验算法中创建项目集

时间:2018-12-28 09:43:39

标签: python machine-learning merge set

我正在阅读《机器学习在行动》一书中有关关联分析的内容。书中给出了以下代码

  

k-2可能有点令人困惑。让我们看一下   进一步。当您从{0},{1},{2}创建{0,1} {0,2},{1,2}时,   您只是合并项目。现在,如果您想使用{0,1} {0,2},该怎么办,   {1,2}创建三个项目集?如果您完成每组的结合,   您会得到{0,1,2},{0,1,2},{0,1,2}。那就对了。一样的   设置三遍。现在,您必须浏览三个项目的列表   设置为仅获取唯一值。您正在尝试保持   您浏览列表的次数最少。现在,如果您比较   第一个元素{0,1} {0,2},{1,2},并且只接受那些   拥有相同的第一项,您会得到什么? {0,1,2}仅一次。   现在,您无需遍历列表即可查找唯一值。

def aprioriGen(Lk, k): #creates Ck
    retList = []
    lenLk = len(Lk)
    for i in range(lenLk):
        for j in range(i+1, lenLk):
            L1 = list(Lk[i])[:k-2]; L2 = list(Lk[j])[:k-2] # Join sets if first k-2 items are equal
            L1.sort(); L2.sort()
            if L1==L2:
                retList.append(Lk[i] | Lk[j])
    return retLis

假设我正在调用上面的函数

Lk = [frozenset({2, 3}), frozenset({3, 5}), frozenset({2, 5}), frozenset({1, 3})]

k = 3

aprioriGen(Lk,3)

我得到以下输出

[frozenset({2, 3, 5})]

我认为上述逻辑中存在错误,因为我们缺少其他组合,例如{1,2,3},{1,3,5}。是不是我的理解正确吗?

1 个答案:

答案 0 :(得分:0)

我认为您正在关注以下链接,输出集取决于我们通过的minSupport。

http://adataanalyst.com/machine-learning/apriori-algorithm-python-3-0/

如果将minSupport值减小为0.2,则会得到所有集合。

下面是完整的代码

# -*- coding: utf-8 -*-
"""
Created on Mon Dec 31 16:57:26 2018

@author: rponnurx
"""

from numpy import *

def loadDataSet():
    return [[1, 3, 4], [2, 3, 5], [1, 2, 3, 5], [2, 5]]

def createC1(dataSet):
    C1 = []
    for transaction in dataSet:
        for item in transaction:
            if not [item] in C1:
                C1.append([item])

    C1.sort()
    return list(map(frozenset, C1))#use frozen set so we
                            #can use it as a key in a dict  

def scanD(D, Ck, minSupport):
    ssCnt = {}
    for tid in D:
        for can in Ck:
            if can.issubset(tid):
                if not can in ssCnt: ssCnt[can]=1
                else: ssCnt[can] += 1
    numItems = float(len(D))
    retList = []
    supportData = {}
    for key in ssCnt:
        support = ssCnt[key]/numItems
        if support >= minSupport:
            retList.insert(0,key)
        supportData[key] = support
    return retList, supportData

dataSet = loadDataSet()
print(dataSet)

C1 = createC1(dataSet)

print(C1)

#D is a dataset in the setform.

D = list(map(set,dataSet))
print(D)

L1,suppDat0 = scanD(D,C1,0.5)
print(L1)

def aprioriGen(Lk, k): #creates Ck
    retList = []
    print("Lk")
    print(Lk)
    lenLk = len(Lk)
    for i in range(lenLk):
        for j in range(i+1, lenLk): 
            L1 = list(Lk[i])[:k-2]; L2 = list(Lk[j])[:k-2]
            L1.sort(); L2.sort()
            if L1==L2: #if first k-2 elements are equal
                retList.append(Lk[i] | Lk[j]) #set union
    return retList

def apriori(dataSet, minSupport = 0.5):
    C1 = createC1(dataSet)
    D = list(map(set, dataSet))
    L1, supportData = scanD(D, C1, minSupport)

    L = [L1]
    k = 2
    while (len(L[k-2]) > 0):
        Ck = aprioriGen(L[k-2], k)
        Lk, supK = scanD(D, Ck, minSupport)#scan DB to get Lk
        supportData.update(supK)
        L.append(Lk)
        k += 1
    return L, supportData

L,suppData = apriori(dataSet,0.2)

print(L)

输出: [[frozenset({5}),frozenset({2}),frozenset({4}),frozenset({3}),frozenset({1})],[frozenset({1,2}),frozenset( {1,5}),frozenset({2,3}),frozenset({3,5}),frozenset({2,5}),frozenset({1,3}),frozenset({1,4} ),frozenset({3,4})],[frozenset({1,3,5}),frozenset({1,2,3}),frozenset({1,2,5}),frozenset({2 ,3、5}),frozenset({1,3,4})],[frozenset({1、2、3、5})],[]]

谢谢, 拉杰斯瓦里·蓬努鲁(Rajeswari Ponnuru)