我将Flask与Celery结合使用,并且试图锁定一个特定任务,以便一次只能运行一个任务。在celery文档中,给出了执行此操作的示例Celery docs, Ensuring a task is only executed one at a time。给出的示例是针对Django的,但是我正在使用flask我已尽力将其转换为可与Flask一起使用,但是我仍然看到具有锁的myTask1可以多次运行。
我不清楚的一件事是,如果我正确地使用了缓存,那么我以前从未使用过它,所以对我来说,所有这些都是新的。
是文档中提到但未解释的一件事 In order for this to work correctly you need to be using a cache backend where the .add operation is atomic. memcached is known to work well for this purpose.
我不确定是什么意思,我应该将缓存与数据库一起使用吗?如果是的话,我该怎么做?我正在使用mongodb。在我的代码中,我只是为缓存cache = Cache(app, config={'CACHE_TYPE': 'simple'})
进行了设置,这就是Flask-Cache文档Flask-Cache Docs
我不清楚的另一件事是,从Flask路线myTask1
内致电task1
时是否需要做其他事情
这是我使用的代码示例。
from flask import (Flask, render_template, flash, redirect,
url_for, session, logging, request, g, render_template_string, jsonify)
from flask_caching import Cache
from contextlib import contextmanager
from celery import Celery
from Flask_celery import make_celery
from celery.result import AsyncResult
from celery.utils.log import get_task_logger
from celery.five import monotonic
from flask_pymongo import PyMongo
from hashlib import md5
import pymongo
import time
app = Flask(__name__)
cache = Cache(app, config={'CACHE_TYPE': 'simple'})
app.config['SECRET_KEY']= 'super secret key for me123456789987654321'
######################
# MONGODB SETUP
#####################
app.config['MONGO_HOST'] = 'localhost'
app.config['MONGO_DBNAME'] = 'celery-test-db'
app.config["MONGO_URI"] = 'mongodb://localhost:27017/celery-test-db'
mongo = PyMongo(app)
##############################
# CELERY ARGUMENTS
##############################
app.config['CELERY_BROKER_URL'] = 'amqp://localhost//'
app.config['CELERY_RESULT_BACKEND'] = 'mongodb://localhost:27017/celery-test-db'
app.config['CELERY_RESULT_BACKEND'] = 'mongodb'
app.config['CELERY_MONGODB_BACKEND_SETTINGS'] = {
"host": "localhost",
"port": 27017,
"database": "celery-test-db",
"taskmeta_collection": "celery_jobs",
}
app.config['CELERY_TASK_SERIALIZER'] = 'json'
celery = Celery('task',broker='mongodb://localhost:27017/jobs')
celery = make_celery(app)
LOCK_EXPIRE = 60 * 2 # Lock expires in 2 minutes
@contextmanager
def memcache_lock(lock_id, oid):
timeout_at = monotonic() + LOCK_EXPIRE - 3
# cache.add fails if the key already exists
status = cache.add(lock_id, oid, LOCK_EXPIRE)
try:
yield status
finally:
# memcache delete is very slow, but we have to use it to take
# advantage of using add() for atomic locking
if monotonic() < timeout_at and status:
# don't release the lock if we exceeded the timeout
# to lessen the chance of releasing an expired lock
# owned by someone else
# also don't release the lock if we didn't acquire it
cache.delete(lock_id)
@celery.task(bind=True, name='app.myTask1')
def myTask1(self):
self.update_state(state='IN TASK')
lock_id = self.name
with memcache_lock(lock_id, self.app.oid) as acquired:
if acquired:
# do work if we got the lock
print('acquired is {}'.format(acquired))
self.update_state(state='DOING WORK')
time.sleep(90)
return 'result'
# otherwise, the lock was already in use
raise self.retry(countdown=60) # redeliver message to the queue, so the work can be done later
@celery.task(bind=True, name='app.myTask2')
def myTask2(self):
print('you are in task2')
self.update_state(state='STARTING')
time.sleep(120)
print('task2 done')
@app.route('/', methods=['GET', 'POST'])
def index():
return render_template('index.html')
@app.route('/task1', methods=['GET', 'POST'])
def task1():
print('running task1')
result = myTask1.delay()
# get async task id
taskResult = AsyncResult(result.task_id)
# push async taskid into db collection job_task_id
mongo.db.job_task_id.insert({'taskid': str(taskResult), 'TaskName': 'task1'})
return render_template('task1.html')
@app.route('/task2', methods=['GET', 'POST'])
def task2():
print('running task2')
result = myTask2.delay()
# get async task id
taskResult = AsyncResult(result.task_id)
# push async taskid into db collection job_task_id
mongo.db.job_task_id.insert({'taskid': str(taskResult), 'TaskName': 'task2'})
return render_template('task2.html')
@app.route('/status', methods=['GET', 'POST'])
def status():
taskid_list = []
task_state_list = []
TaskName_list = []
allAsyncData = mongo.db.job_task_id.find()
for doc in allAsyncData:
try:
taskid_list.append(doc['taskid'])
except:
print('error with db conneciton in asyncJobStatus')
TaskName_list.append(doc['TaskName'])
# PASS TASK ID TO ASYNC RESULT TO GET TASK RESULT FOR THAT SPECIFIC TASK
for item in taskid_list:
try:
task_state_list.append(myTask1.AsyncResult(item).state)
except:
task_state_list.append('UNKNOWN')
return render_template('status.html', data_list=zip(task_state_list, TaskName_list))
from flask import (Flask, render_template, flash, redirect,
url_for, session, logging, request, g, render_template_string, jsonify)
from flask_caching import Cache
from contextlib import contextmanager
from celery import Celery
from Flask_celery import make_celery
from celery.result import AsyncResult
from celery.utils.log import get_task_logger
from celery.five import monotonic
from flask_pymongo import PyMongo
from hashlib import md5
import pymongo
import time
import redis
from flask_redis import FlaskRedis
app = Flask(__name__)
# ADDING REDIS
redis_store = FlaskRedis(app)
# POINTING CACHE_TYPE TO REDIS
cache = Cache(app, config={'CACHE_TYPE': 'redis'})
app.config['SECRET_KEY']= 'super secret key for me123456789987654321'
######################
# MONGODB SETUP
#####################
app.config['MONGO_HOST'] = 'localhost'
app.config['MONGO_DBNAME'] = 'celery-test-db'
app.config["MONGO_URI"] = 'mongodb://localhost:27017/celery-test-db'
mongo = PyMongo(app)
##############################
# CELERY ARGUMENTS
##############################
# CELERY USING REDIS
app.config['CELERY_BROKER_URL'] = 'redis://localhost:6379/0'
app.config['CELERY_RESULT_BACKEND'] = 'mongodb://localhost:27017/celery-test-db'
app.config['CELERY_RESULT_BACKEND'] = 'mongodb'
app.config['CELERY_MONGODB_BACKEND_SETTINGS'] = {
"host": "localhost",
"port": 27017,
"database": "celery-test-db",
"taskmeta_collection": "celery_jobs",
}
app.config['CELERY_TASK_SERIALIZER'] = 'json'
celery = Celery('task',broker='mongodb://localhost:27017/jobs')
celery = make_celery(app)
LOCK_EXPIRE = 60 * 2 # Lock expires in 2 minutes
@contextmanager
def memcache_lock(lock_id, oid):
timeout_at = monotonic() + LOCK_EXPIRE - 3
print('in memcache_lock and timeout_at is {}'.format(timeout_at))
# cache.add fails if the key already exists
status = cache.add(lock_id, oid, LOCK_EXPIRE)
try:
yield status
print('memcache_lock and status is {}'.format(status))
finally:
# memcache delete is very slow, but we have to use it to take
# advantage of using add() for atomic locking
if monotonic() < timeout_at and status:
# don't release the lock if we exceeded the timeout
# to lessen the chance of releasing an expired lock
# owned by someone else
# also don't release the lock if we didn't acquire it
cache.delete(lock_id)
@celery.task(bind=True, name='app.myTask1')
def myTask1(self):
self.update_state(state='IN TASK')
print('dir is {} '.format(dir(self)))
lock_id = self.name
print('lock_id is {}'.format(lock_id))
with memcache_lock(lock_id, self.app.oid) as acquired:
print('in memcache_lock and lock_id is {} self.app.oid is {} and acquired is {}'.format(lock_id, self.app.oid, acquired))
if acquired:
# do work if we got the lock
print('acquired is {}'.format(acquired))
self.update_state(state='DOING WORK')
time.sleep(90)
return 'result'
# otherwise, the lock was already in use
raise self.retry(countdown=60) # redeliver message to the queue, so the work can be done later
@celery.task(bind=True, name='app.myTask2')
def myTask2(self):
print('you are in task2')
self.update_state(state='STARTING')
time.sleep(120)
print('task2 done')
@app.route('/', methods=['GET', 'POST'])
def index():
return render_template('index.html')
@app.route('/task1', methods=['GET', 'POST'])
def task1():
print('running task1')
result = myTask1.delay()
# get async task id
taskResult = AsyncResult(result.task_id)
# push async taskid into db collection job_task_id
mongo.db.job_task_id.insert({'taskid': str(taskResult), 'TaskName': 'myTask1'})
return render_template('task1.html')
@app.route('/task2', methods=['GET', 'POST'])
def task2():
print('running task2')
result = myTask2.delay()
# get async task id
taskResult = AsyncResult(result.task_id)
# push async taskid into db collection job_task_id
mongo.db.job_task_id.insert({'taskid': str(taskResult), 'TaskName': 'task2'})
return render_template('task2.html')
@app.route('/status', methods=['GET', 'POST'])
def status():
taskid_list = []
task_state_list = []
TaskName_list = []
allAsyncData = mongo.db.job_task_id.find()
for doc in allAsyncData:
try:
taskid_list.append(doc['taskid'])
except:
print('error with db conneciton in asyncJobStatus')
TaskName_list.append(doc['TaskName'])
# PASS TASK ID TO ASYNC RESULT TO GET TASK RESULT FOR THAT SPECIFIC TASK
for item in taskid_list:
try:
task_state_list.append(myTask1.AsyncResult(item).state)
except:
task_state_list.append('UNKNOWN')
return render_template('status.html', data_list=zip(task_state_list, TaskName_list))
if __name__ == '__main__':
app.secret_key = 'super secret key for me123456789987654321'
app.run(port=1234, host='localhost')
这也是一个屏幕快照,您可以看到我两次运行myTask1
,一次运行myTask2。现在,我具有myTask1的预期行为。现在myTask1
将由一个工作人员运行,如果另一个工作人员尝试将其捡起,它将根据我定义的内容继续重试。
答案 0 :(得分:2)
在您的问题中,您从您使用的Celery示例中指出了此警告:
为使其正常工作,您需要使用
.add
操作为原子操作的缓存后端。memcached
可以很好地达到此目的。
您提到您并不真正理解这意味着什么。实际上,您显示的代码表明您没有注意该警告,因为您的代码使用了不合适的后端。
考虑以下代码:
with memcache_lock(lock_id, self.app.oid) as acquired:
if acquired:
# do some work
您想要的是acquired
一次仅适用于一个线程。如果两个线程同时进入with
块,则只有一个线程应“获胜”并具有acquired
为真。然后,该具有acquired
为true的线程可以继续其工作,而另一个线程必须跳过该工作并稍后再试一次以获取锁。 为了确保只有一个线程可以拥有acquired
为真,.add
必须是原子的。
以下是.add(key, value)
所做的一些伪代码:
1. if <key> is already in the cache:
2. return False
3. else:
4. set the cache so that <key> has the value <value>
5. return True
如果.add
的执行不是原子的,则如果两个线程A和B执行.add("foo", "bar")
,则可能会发生这种情况。在一开始就假设有一个空的缓存。
1. if "foo" is already in the cache
并发现"foo"
不在缓存中,并跳转到第3行,但是线程调度程序将控制权切换到线程B。1. if "foo" is already in the cache
,并且还发现“ foo”不在高速缓存中。因此,它跳到第3行,然后执行第4和5行,将键"foo"
设置为值"bar"
,并且调用返回True
。"foo"
设置为值"bar"
并还返回True
。 / li>
这里有两个.add
调用,它们返回True
,如果这些.add
调用是在memcache_lock
内进行的,则意味着两个线程可以拥有{{1} } 是真的。因此,两个线程可以同时工作,而您的acquired
并未执行应做的工作,这一次只允许一个线程工作。
您使用的缓存不能确保memcache_lock
是原子。您可以这样初始化它:
.add
simple
backend的作用域为单个进程,没有线程安全,并且具有cache = Cache(app, config={'CACHE_TYPE': 'simple'})
操作,该操作不是原子的。 (顺便说一句,这完全不涉及Mongo。如果您希望缓存由Mongo支持,则必须指定专门为将数据发送到Mongo数据库而设计的支持。)
因此,您必须切换到另一个后端,以保证.add
是原子的。您可以遵循Celery示例的开头并使用memcached
backend,它确实具有原子.add
操作。我不使用Flask,但实际上我已经完成了您在Django和Celery上所做的工作,并且成功地使用Redis后端来提供您在此处使用的那种锁定。
答案 1 :(得分:1)
使用此设置,您仍应该期望看到工作人员正在接收任务,因为锁定是在任务本身内部检查的。唯一的区别是,如果另一个工人获得了锁,则将无法执行该工作。
在文档中给出的示例中,这是所需的行为;如果已经存在锁,则该任务将不执行任何操作并成功完成。您想要的内容略有不同;您希望将工作排队而不是忽略。
为了获得理想的效果,您需要确保该任务将由工作人员承担并在将来的某个时间执行。实现此目的的一种方法是重试。
@task(bind=True, name='my-task')
def my_task(self):
lock_id = self.name
with memcache_lock(lock_id, self.app.oid) as acquired:
if acquired:
# do work if we got the lock
print('acquired is {}'.format(acquired))
return 'result'
# otherwise, the lock was already in use
raise self.retry(countdown=60) # redeliver message to the queue, so the work can be done later
答案 2 :(得分:1)
我还发现这是一个非常困难的问题。受到Sebastian's work的启发,我在Redis中实现了分布式锁定算法,因此我写了decorator function。
此方法要牢记的一个关键点是,我们将任务锁定在任务参数空间的级别,例如我们允许多个游戏更新/流程订单任务同时运行,但每个游戏只能运行一个。这就是argument_signature
在下面的代码中所实现的。您可以在this gist的堆栈中查看有关如何使用它的文档:
import base64
from contextlib import contextmanager
import json
import pickle as pkl
import uuid
from backend.config import Config
from redis import StrictRedis
from redis_cache import RedisCache
from redlock import Redlock
rds = StrictRedis(Config.REDIS_HOST, decode_responses=True, charset="utf-8")
rds_cache = StrictRedis(Config.REDIS_HOST, decode_responses=False, charset="utf-8")
redis_cache = RedisCache(redis_client=rds_cache, prefix="rc", serializer=pkl.dumps, deserializer=pkl.loads)
dlm = Redlock([{"host": Config.REDIS_HOST}])
TASK_LOCK_MSG = "Task execution skipped -- another task already has the lock"
DEFAULT_ASSET_EXPIRATION = 8 * 24 * 60 * 60 # by default keep cached values around for 8 days
DEFAULT_CACHE_EXPIRATION = 1 * 24 * 60 * 60 # we can keep cached values around for a shorter period of time
REMOVE_ONLY_IF_OWNER_SCRIPT = """
if redis.call("get",KEYS[1]) == ARGV[1] then
return redis.call("del",KEYS[1])
else
return 0
end
"""
@contextmanager
def redis_lock(lock_name, expires=60):
# https://breadcrumbscollector.tech/what-is-celery-beat-and-how-to-use-it-part-2-patterns-and-caveats/
random_value = str(uuid.uuid4())
lock_acquired = bool(
rds.set(lock_name, random_value, ex=expires, nx=True)
)
yield lock_acquired
if lock_acquired:
rds.eval(REMOVE_ONLY_IF_OWNER_SCRIPT, 1, lock_name, random_value)
def argument_signature(*args, **kwargs):
arg_list = [str(x) for x in args]
kwarg_list = [f"{str(k)}:{str(v)}" for k, v in kwargs.items()]
return base64.b64encode(f"{'_'.join(arg_list)}-{'_'.join(kwarg_list)}".encode()).decode()
def task_lock(func=None, main_key="", timeout=None):
def _dec(run_func):
def _caller(*args, **kwargs):
with redis_lock(f"{main_key}_{argument_signature(*args, **kwargs)}", timeout) as acquired:
if not acquired:
return TASK_LOCK_MSG
return run_func(*args, **kwargs)
return _caller
return _dec(func) if func is not None else _dec
我们的任务定义文件中的实现:
@celery.task(name="async_test_task_lock")
@task_lock(main_key="async_test_task_lock", timeout=UPDATE_GAME_DATA_TIMEOUT)
def async_test_task_lock(game_id):
print(f"processing game_id {game_id}")
time.sleep(TASK_LOCK_TEST_SLEEP)
我们如何针对本地芹菜丛进行测试:
from backend.tasks.definitions import async_test_task_lock, TASK_LOCK_TEST_SLEEP
from backend.tasks.redis_handlers import rds, TASK_LOCK_MSG
class TestTaskLocking(TestCase):
def test_task_locking(self):
rds.flushall()
res1 = async_test_task_lock.delay(3)
res2 = async_test_task_lock.delay(5)
self.assertFalse(res1.ready())
self.assertFalse(res2.ready())
res3 = async_test_task_lock.delay(5)
res4 = async_test_task_lock.delay(5)
self.assertEqual(res3.get(), TASK_LOCK_MSG)
self.assertEqual(res4.get(), TASK_LOCK_MSG)
time.sleep(TASK_LOCK_TEST_SLEEP)
res5 = async_test_task_lock.delay(3)
self.assertFalse(res5.ready())
(作为一个好东西,还有一个简单的示例,说明如何设置redis_cache
)