我正在Apache flink sql api中构建管道。 管道执行简单的投影查询。但是,我需要在查询之前和查询之后再编写一次元组(每个元组中恰好有一些元素)。 事实证明,我用来编写Redis的代码严重降低了性能。也就是说,flink在非常小的数据速率中产生了反压力。 我的代码有什么问题以及如何改进。任何建议,请。
当我停止写redis前后,性能非常好。 这是我的管道代码:
public class QueryExample {
public static Long throughputCounterAfter=new Long("0");
public static void main(String[] args) {
int k_partitions = 10;
reamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
env.setParallelism(5 * 32);
Properties props = new Properties();
props.setProperty("zookeeper.connect", "zookeeper-node-01:2181");
props.setProperty("bootstrap.servers", "kafka-node-01:9092,kafka-node-02:9092,kafka-node-03:9092");
// not to be shared with another job consuming the same topic
props.setProperty("group.id", "flink-group");
props.setProperty("enable.auto.commit","false");
FlinkKafkaConsumer011<String> purchasesConsumer=new FlinkKafkaConsumer011<String>("purchases",
new SimpleStringSchema(),
props);
DataStream<String> purchasesStream = env
.addSource(purchasesConsumer)
.setParallelism(Math.min(5 * 32, k_partitions));
DataStream<Tuple4<Integer, Integer, Integer, Long>> purchaseWithTimestampsAndWatermarks =
purchasesStream
.flatMap(new PurchasesParser())
.assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor<Tuple4<Integer, Integer, Integer, Long>>(Time.seconds(10)) {
@Override
public long extractTimestamp(Tuple4<Integer, Integer, Integer, Long> element) {
return element.getField(3);
}
});
Table purchasesTable = tEnv.fromDataStream(purchaseWithTimestampsAndWatermarks, "userID, gemPackID,price, rowtime.rowtime");
tEnv.registerTable("purchasesTable", purchasesTable);
purchaseWithTimestampsAndWatermarks.flatMap(new WriteToRedis());
Table result = tEnv.sqlQuery("SELECT userID, gemPackID, rowtime from purchasesTable");
DataStream<Tuple2<Boolean, Row>> queryResultAsDataStream = tEnv.toRetractStream(result, Row.class);
queryResultAsDataStream.flatMap(new WriteToRedis());
try {
env.execute("flink SQL");
} catch (Exception e) {
e.printStackTrace();
}
}
/**
* write to redis
*/
public static class WriteToRedis extends RichFlatMapFunction<Tuple4<Integer, Integer, Integer, Long>, String> {
RedisReadAndWrite redisReadAndWrite;
@Override
public void open(Configuration parameters) {
LOG.info("Opening connection with Jedis to {}", "redis");
this.redisReadAndWrite = new RedisReadAndWrite("redis",6379);
}
@Override
public void flatMap(Tuple4<Integer, Integer, Integer, Long> input, Collector<String> out) throws Exception {
this.redisReadAndWrite.write(input.f0+":"+input.f3+"","time_seen", TimeUnit.NANOSECONDS.toMillis(System.nanoTime())+"");
}
}
}
public class RedisReadAndWrite {
private Jedis flush_jedis;
public RedisReadAndWrite(String redisServerName , int port) {
flush_jedis=new Jedis(redisServerName,port);
}
public void write(String key,String field, String value) {
flush_jedis.hset(key,field,value);
}
}
其他部分: 我尝试了第二种实现的过程功能,即使用Jedis批处理toredis的过程。但是我收到以下错误。 org.apache.flink.runtime.client.JobExecutionException:redis.clients.jedis.exceptions.JedisConnectionException:java.net.SocketException:套接字未连接。我试图甚至减少批处理邮件的数量,但过一会儿仍然出现错误。
这是流程功能的实现:
/ ** *使用过程功能写入Redis * /
public static class WriteToRedisAfterQueryProcessFn extends ProcessFunction<Tuple2<Boolean, Row>, String> {
Long timetoFlush;
@Override
public void open(Configuration parameters) {
flush_jedis=new Jedis("redis",6379,1800);
p = flush_jedis.pipelined();
this.timetoFlush=System.currentTimeMillis()-initialTime;
}
@Override
public void processElement(Tuple2<Boolean, Row> input, Context context, Collector<String> collector) throws Exception {
p.hset(input.f1.getField(0)+":"+new Instant(input.f1.getField(2)).getMillis()+"","time_updated",TimeUnit.NANOSECONDS.toMillis(System.nanoTime())+"");
throughputAccomulationcount++;
System.out.println(throughputAccomulationcount);
if(throughputAccomulationcount==50000){
throughputAccomulationcount=0L;
p.sync();
}
}
}
答案 0 :(得分:2)
毫无疑问,您遇到的性能不佳是由于您正在为每个写入发出同步请求以进行Redis。 @kkrugler已经提到了异步I / O,这是这种情况的常见解决方法。这将需要切换到支持异步操作的Redis客户端之一。
与外部服务一起使用时,另一个常用的解决方案是将多组写入组合在一起。使用jedis,您可以使用pipelining。例如,您可以用ProcessFunction替换WriteToRedis
RichFlatMapFunction,该ProcessFunction进行流水式写入批量重做Redis,并根据需要根据超时刷新其缓冲区。您可以使用Flink的ListState作为缓冲区。
答案 1 :(得分:1)
通常,在写入外部服务时,这成为Flink工作流程的瓶颈。提高性能的最简单方法是通过AsyncFunction对工作流的这一部分进行多线程处理。有关更多详细信息,请参见this documentation。
-肯