如何使用熊猫从csv筛选出非英语数据

时间:2018-12-27 09:00:19

标签: python pandas nlp jupyter-notebook

我目前正在编写代码以从csv文件中提取常用单词,并且在我列出列出的陌生单词的小图之前,它的工作效果很好。我不知道为什么,可能是因为其中包含一些外来词。但是,我不知道该如何解决。

import numpy as np
import pandas as pd
from sklearn import preprocessing
from sklearn.feature_extraction.text import CountVectorizer, 
TfidfVectorizer
from sklearn.model_selection import train_test_split, KFold
from nltk.corpus import stopwords
from nltk.stem.snowball import SnowballStemmer
import matplotlib
from matplotlib import pyplot as plt
import sys
sys.setrecursionlimit(100000)
# import seaborn as sns
%matplotlib inline
%config InlineBackend.figure_format = 'retina'

data = pd.read_csv("C:\\Users\\Administrator\\Desktop\\nlp_dataset\\commitment.csv", encoding='cp1252',na_values=" NaN")

data.shape
data['text'] = data.fillna({'text':'none'})
def remove_punctuation(text):
    '' 'a function for removing punctuation'''
    import string
    #replacing the punctuations with no space,
    #which in effect deletes the punctuation marks
    translator = str.maketrans('', '', string.punctuation)
    #return the text stripped of punctuation marks
    return text.translate(translator)

#Apply the function to each examples 
data['text'] = data['text'].apply(remove_punctuation)
data.head(10)

#Removing stopwords -- extract the stopwords
#extracting the stopwords from nltk library
sw= stopwords.words('english')
#displaying the stopwords
np.array(sw)

# function to remove stopwords
def stopwords(text):
    '''a function for removing stopwords'''
        #removing the stop words and lowercasing the selected words
        text = [word.lower() for word in text.split()  if word.lower() not in sw]
        #joining the list of words with space separator
        return  " ". join(text)

# Apply the function to each examples
data['text'] = data ['text'].apply(stopwords)
data.head(10)

# Top words before stemming  
# create a count vectorizer object
count_vectorizer = CountVectorizer()
# fit the count vectorizer using the text dta
count_vectorizer.fit(data['text'])
# collect the vocabulary items used in the vectorizer
dictionary = count_vectorizer.vocabulary_.items() 

#store the vocab and counts in a pandas dataframe
vocab = []
count = []
#iterate through each vocav and count append the value to designated lists
for key, value in dictionary:
 vocab.append(key)
 count.append(value)
#store the count in pandas dataframe with vocab as indedx
vocab_bef_stem = pd.Series(count, index=vocab)
#sort the dataframe
vocab_bef_stem = vocab_bef_stem.sort_values(ascending = False)

# Bar plot of top words before stemming
top_vocab = vocab_bef_stem.head(20)
top_vocab.plot(kind = 'barh', figsize=(5,10), xlim = (1000, 5000))

我想要一个按条形图排列的常用单词列表,但是现在它只给出频率完全相同的非英语单词。请帮帮我

1 个答案:

答案 0 :(得分:0)

问题是您没有按计数对词汇进行排序,而没有按计数矢量化程序创建的某些唯一ID进行排序。

count_vectorizer.vocabulary_.items() 

这不包含每个功能的数量。 count_vectorizer不会保存每个功能的数量。

因此,您将从情节中的语料库中看到最稀有/拼写错误的单词(因为这些单词会带来更大的变化,即更大的价值-唯一ID)。获取单词计数的方法是对文本数据进行转换,然后对所有文档中每个单词的计数求和。

默认情况下,tf-idf会删除标点符号,并且您还可以输入停用词列表,以使矢量化程序将其删除。您的代码可以减少如下。

from sklearn.feature_extraction.text import CountVectorizer
corpus = [
    'This is the first document.',
    'This document is the second document.',
    'And this is the third one.',
    'Is this the first document ?',
]

sw= stopwords.words('english')

count_vectorizer = CountVectorizer(stop_words=sw)
X = count_vectorizer.fit_transform(corpus)
vocab = pd.Series( X.toarray().sum(axis=0), index = count_vectorizer.get_feature_names())
vocab.sort_values(ascending=False).plot.bar(figsize=(5,5), xlim = (0, 7))

插入您的文本数据列,而不是corpus。以上代码段的输出将为

enter image description here