要求
映射
{
"mapping": {
"product": {
"properties": {
"user_id": {
"type": "integer"
}
"custom_field_values": {
"type": "nested",
"properties": {
"custom_field_id": {
"type": "integer"
},
"id": {
"type": "integer"
},
"value": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword"
}
}
}
}
}
}
}
}
}
示例数据
{
{
"_type": "product",
"_source": {
"user_id": 1,
"custom_field_values": [
{ "id": 1, "custom_field_id": 1, "value": "A"},
{ "id": 2, "custom_field_id": 2, "value": "B"},
{ "id": 3, "custom_field_id": 3, "value": "C"},
]
}
},
{
"_type": "product",
"_source": {
"user_id": 2,
"custom_field_values": [
{ "id": 4, "custom_field_id": 1, "value": "Y"},
{ "id": 5, "custom_field_id": 2, "value": "Z"},
]
}
},
{
"_type": "product",
"_source": {
"user_id": 3,
"custom_field_values": [
{ "id": 6, "custom_field_id": 2, "value": "P"},
{ "id": 7, "custom_field_id": 3, "value": "Q"},
]
}
}
}
期望
product
对整个custom_field_values.custom_field_id
过滤器进行排序,按custom_field_values.value
进行排序示例查询
{
"size":100,
"from":0,
"query":{
"bool":{
"filter":{
"match":{
"user_id":1
}
}
}
},
"sort":[
{
"custom_field_values.value.keyword":{
"order":"desc",
"nested":{
"path":"custom_field_values",
"filter":{
"match":{
"custom_field_values.custom_field_id": 2
}
}
}
}
}
]
}
更新查询
{
"size":100,
"from":0,
"query":{
"bool":{
"filter":{
"match":{
"user_id":1
}
}
},
"nested": {
"path": "comments",
"filter": {
"custom_field_values.custom_field_id": 2
}
}
},
"sort":[
{
"custom_field_values.value.keyword":{
"order":"desc",
"nested":{
"path":"custom_field_values",
"filter":{
"match":{
"custom_field_values.custom_field_id": 2
}
}
}
}
}
]
}
结果顺序应为2nd product
,然后依次为3rd product
和1st product
。而且,如果我想遍历产品并打印custom_field_values.value
,我应该得到Z
,P
,B
。
答案 0 :(得分:1)
因此,问题出在区分大小写的数据上。 https://www.elastic.co/guide/en/elasticsearch/reference/current/normalizer.html解决了我的问题。
"settings": {
"analysis": {
"normalizer": {
"my_normalizer": {
"type": "custom",
"char_filter": [],
"filter": ["lowercase", "asciifolding"]
}
}
}
}
现在我们可以将此规范化器与我们的关键字字段类型一起使用:
field :field_name, type: 'keyword', normalizer: 'my_normalizer'
希望这会有所帮助。