数据类型如何影响火车损耗/精度图

时间:2018-12-26 06:41:48

标签: python-3.x numpy keras deep-learning numpy-ndarray

具有类型为testdict = [{"brand": "ford", "model": "Mustang", "year": 1964}, {"brand": "ford", "model": "Mustang", "year": 1965}, {"brand": "ford", "model": "Mustang", "year": 1966}, {"brand": "ford", "model": "Mustang", "year": 1967}, {"brand": "ford", "model": "Mustang", "year": 1968}, {"brand": "ford", "model": "Mustang"}, {"brand": "ford", "model": "Mustang", "year": 1970}, {"brand": "ford", "model": "Mustang", "year": 1971}, {"brand": "ford", "model": "Mustang", "year": 1972}, {"brand": "ford", "model": "Mustang", "year": 1973}, {"brand": "ford", "model": "Mustang", "year": 1974},] for x in testdict: print(x["brand"], x["year"]) 的图像数据集。如果我将这些图像转换为数据类型uint8float16float32。现在,将相同的体系结构分别应用于所有这些数据类型。我会得到相同的精度/损耗图,还是数据类型会影响这些图?

0 个答案:

没有答案