在Keras中使用预训练模型并替换顶层分类层以将网络重新训练为新任务,其中有几个在Keras中使用顺序模型的示例。顺序模型具有方法model.pop()
和model.add()
,这使这相当容易。
但是,使用功能模型如何实现?该框架没有方法model.add()
。
如何在Keras中加载经过预训练的功能模型,裁剪最后一层并替换为新层?
到目前为止的当前方法:
model.load_weights('/my_model_weights.h5')
def pop_layer(model):
if not model.outputs:
raise Exception('Sequential model cannot be popped: model is empty.')
model.layers.pop()
if not model.layers:
model.outputs = []
model.inbound_nodes = []
model.outbound_nodes = []
else:
model.layers[-1].outbound_nodes = []
model.outputs = [model.layers[-1].output]
model.built = False
# Remove last layer with custom function (from another post)
pop_layer(model)
# Now add a new layer to the model ???
model.add(Dense(2, activation='softmax', name='fc2'))
model.compile(loss='sparse_categorical_crossentropy', optimizer='sgd',
metrics=['accuracy'])
AttributeError:“模型”对象没有属性“添加”
答案 0 :(得分:2)
您可以使用预先训练的功能模型,并删除最后一层作为图层。您可能会认为模型是“更大的层”。然后重新定义一个包含“更大的图层”和新图层的新模型。
一个例子:
import tensorflow as tf
from keras.layers import Dense,Input
from keras.models import Sequential,Model
input_tensor = Input(shape=(64,))
x = Dense(32, activation='relu')(input_tensor)
x = Dense(32, activation='relu')(x)
output_tensor = Dense(10, activation=tf.nn.softmax)(x)
model = Model(input_tensor, output_tensor)
model.compile(loss='sparse_categorical_crossentropy', optimizer='sgd',
metrics=['accuracy'])
print(model.summary())
model.save_weights('my_model_weights.h5')
#
model.load_weights('my_model_weights.h5')
def pop_layer(model):
if not model.outputs:
raise Exception('Sequential model cannot be popped: model is empty.')
model.layers.pop()
if not model.layers:
model.outputs = []
model.inbound_nodes = []
model.outbound_nodes = []
else:
model.layers[-1].outbound_nodes = []
model.outputs = [model.layers[-1].output]
return model
# Remove last layer with custom function (from another post)
model_old = pop_layer(model)
# Now add a new layer to the model
model_new = Sequential()
model_new.add(model_old)
model_new.add(Dense(2, activation=tf.nn.softmax, name='fc2'))
model_new.compile(loss='sparse_categorical_crossentropy', optimizer='sgd',
metrics=['accuracy'])
print(model_new.summary())
结果,您会看到缺少预训练功能模型的最后一层的参数。
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) (None, 64) 0
_________________________________________________________________
dense_1 (Dense) (None, 32) 2080
_________________________________________________________________
dense_2 (Dense) (None, 32) 1056
_________________________________________________________________
dense_3 (Dense) (None, 10) 330
=================================================================
Total params: 3,466
Trainable params: 3,466
Non-trainable params: 0
_________________________________________________________________
None
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
model_1 (Model) multiple 3136
_________________________________________________________________
fc2 (Dense) (None, 2) 66
=================================================================
Total params: 3,202
Trainable params: 3,202
Non-trainable params: 0
_________________________________________________________________
None