我正在尝试使用Mblondel Multiclass SVM中的多类SVM代码,我读了他的论文,他使用了sklearn 20newsgroup中的数据集,但是当我尝试使用它时,代码无法正常工作。
我试图更改代码以匹配20newsgroup数据集。但是我被这个错误困住了。
回溯(最近通话最近一次):
文件
中的文件“ F:\ env \ chatbotstripped \ CSSVM.py”,第157行clf.fit(X,y)
适合的文件“ F:\ env \ chatbotstripped \ CSSVM.py”,第106行
v = self._violation(g,y,i)
_violation中的文件“ F:\ env \ chatbotstripped \ CSSVM.py”,第50行
elif k!= y [i]和self.dual_coef_ [k,i]> = 0:
IndexError:索引20超出了大小为20的轴0的边界
这是主要代码:
java.lang.NullPointerException: Attempt to invoke virtual method 'void com.example.hp.finalproject.Activities.Wallpaper.WallpaperHelper.setLiked(long)' on a null object reference
at com.example.hp.finalproject.Activities.Wallpaper.wallAdapter$ViewHolderWall$1.onClick(wallAdapter.java:112)
at com.sackcentury.shinebuttonlib.ShineButton$OnButtonClickListener.onClick(ShineButton.java:343)
at android.view.View.performClick(View.java:5637)
at android.view.View$PerformClick.run(View.java:22429)
at android.os.Handler.handleCallback(Handler.java:751)
at android.os.Handler.dispatchMessage(Handler.java:95)
at android.os.Looper.loop(Looper.java:154)
at android.app.ActivityThread.main(ActivityThread.java:6119)
at java.lang.reflect.Method.invoke(Native Method)
at com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.java:886)
at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:776)
这是合适的代码:
from sklearn.datasets import fetch_20newsgroups
news_train = fetch_20newsgroups(subset='train')
X, y = news_train.data[:100], news_train.target[:100]
clf = MulticlassSVM(C=0.1, tol=0.01, max_iter=100, random_state=0, verbose=1)
X = TfidfVectorizer().fit_transform(X)
clf.fit(X, y)
print(clf.score(X, y))
和_violation代码:
def fit(self, X, y):
n_samples, n_features = X.shape
self._label_encoder = LabelEncoder()
y = self._label_encoder.fit_transform(y)
n_classes = len(self._label_encoder.classes_)
self.dual_coef_ = np.zeros((n_classes, n_samples), dtype=np.float64)
self.coef_ = np.zeros((n_classes, n_features))
norms = np.sqrt(np.sum(X.power(2), axis=1)) # i changed this code
rs = check_random_state(self.random_state)
ind = np.arange(n_samples)
rs.shuffle(ind)
# i added this sparse
sparse = sp.isspmatrix(X)
if sparse:
X = np.asarray(X.data, dtype=np.float64, order='C')
for it in range(self.max_iter):
violation_sum = 0
for ii in range(n_samples):
i = ind[ii]
if norms[i] == 0:
continue
g = self._partial_gradient(X, y, i)
v = self._violation(g, y, i)
violation_sum += v
if v < 1e-12:
continue
delta = self._solve_subproblem(g, y, norms, i)
self.coef_ += (delta * X[i][:, np.newaxis]).T
self.dual_coef_[:, i] += delta
if it == 0:
violation_init = violation_sum
vratio = violation_sum / violation_init
if self.verbose >= 1:
print("iter", it + 1, "violation", vratio)
if vratio < self.tol:
if self.verbose >= 1:
print("Converged")
break
return self
我知道索引有问题,我不确定如何解决该问题,并且我不想破坏代码,因为我不太了解该代码的工作原理。
答案 0 :(得分:0)
您必须将tfidf矢量化器的稀疏矩阵输出转换为密集矩阵,然后使其成为2D数组。试试吧!
from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import TfidfVectorizer
news_train = fetch_20newsgroups(subset='train')
text, y = news_train.data[:1000], news_train.target[:1000]
clf = MulticlassSVM(C=0.1, tol=0.01, max_iter=100, random_state=0, verbose=1)
vectorizer= TfidfVectorizer(min_df=20,stop_words='english')
X = np.asarray(vectorizer.fit_transform(text).todense())
clf.fit(X, y)
print(clf.score(X, y))
输出:
iter 1 violation 1.0
iter 2 violation 0.07075102408683964
iter 3 violation 0.018288133735158228
iter 4 violation 0.009149083942255389
Converged
0.953