我有tf.example格式的数据,并试图以预测格式(使用gRPC)向保存的模型发出请求。我无法确定实现此目的的方法调用。
我从众所周知的汽车定价DNN回归模型(https://github.com/tensorflow/models/blob/master/samples/cookbook/regression/dnn_regression.py)开始,该模型已经通过TF Serving docker容器导出并安装了
import grpc
import numpy as np
import tensorflow as tf
from tensorflow_serving.apis import predict_pb2, prediction_service_pb2_grpc
stub = prediction_service_pb2_grpc.PredictionServiceStub(grpc.insecure_channel("localhost:8500"))
tf_ex = tf.train.Example(
features=tf.train.Features(
feature={
'curb-weight': tf.train.Feature(float_list=tf.train.FloatList(value=[5.1])),
'highway-mpg': tf.train.Feature(float_list=tf.train.FloatList(value=[3.3])),
'body-style': tf.train.Feature(bytes_list=tf.train.BytesList(value=[b"wagon"])),
'make': tf.train.Feature(bytes_list=tf.train.BytesList(value=[b"Honda"])),
}
)
)
request = predict_pb2.PredictRequest()
request.model_spec.name = "regressor_test"
# Tried this:
request.inputs['inputs'].CopyFrom(tf_ex)
# Also tried this:
request.inputs['inputs'].CopyFrom(tf.contrib.util.make_tensor_proto(tf_ex))
# This doesn't work either:
request.input.example_list.examples.extend(tf_ex)
# If it did work, I would like to inference on it like this:
result = self.stub.Predict(request, 10.0)
谢谢您的建议
答案 0 :(得分:0)
我假设您的saveModel有一个serving_input_receiver_fn
,以string
作为输入并解析为tf.Example
。 Using SavedModel with Estimators
def serving_example_input_receiver_fn():
serialized_tf_example = tf.placeholder(dtype=tf.string)
receiver_tensors = {'inputs': serialized_tf_example}
features = tf.parse_example(serialized_tf_example, YOUR_EXAMPLE_SCHEMA)
return tf.estimator.export.ServingInputReceiver(features, receiver_tensors)
因此,serving_input_receiver_fn
接受一个字符串,因此您必须SerializeToString
tf.Example()
。此外,serving_input_receiver_fn
的工作方式类似于input_fn
进行训练,将数据以批处理方式转储到模型中。
代码可能会更改为:
request = predict_pb2.PredictRequest()
request.model_spec.name = "regressor_test"
request.model_spec.signature_name = 'your method signature, check use saved_model_cli'
request.inputs['inputs'].CopyFrom(tf.make_tensor_proto([tf_ex.SerializeToString()], dtype=types_pb2.DT_STRING))
答案 1 :(得分:0)
@hakunami的答案对我不起作用。但是当我将最后一行修改为
时for (size_t i = 0; i < 3; ++i)
std::cout << tmp[i];
有效。如果“ shape”为“ None”,则生成的张量原型将精确地表示numpy数组。enter link description here