我试图在更大的scikit学习管道中使用spacy作为标记器,但是始终遇到无法腌制该任务发送给工人的问题。
最小示例:
from sklearn.linear_model import SGDClassifier
from sklearn.pipeline import Pipeline
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.model_selection import RandomizedSearchCV
from sklearn.datasets import fetch_20newsgroups
from functools import partial
import spacy
def spacy_tokenize(text, nlp):
return [x.orth_ for x in nlp(text)]
nlp = spacy.load('en', disable=['ner', 'parser', 'tagger'])
tok = partial(spacy_tokenize, nlp=nlp)
pipeline = Pipeline([('vectorize', CountVectorizer(tokenizer=tok)),
('clf', SGDClassifier())])
params = {'vectorize__ngram_range': [(1, 2), (1, 3)]}
CV = RandomizedSearchCV(pipeline,
param_distributions=params,
n_iter=2, cv=2, n_jobs=2,
scoring='accuracy')
categories = ['alt.atheism', 'comp.graphics']
news = fetch_20newsgroups(subset='train',
categories=categories,
shuffle=True,
random_state=42)
CV.fit(news.data, news.target)
运行此代码,我得到错误:
PicklingError: Could not pickle the task to send it to the workers.
令我困惑的是:
import pickle
pickle.dump(tok, open('test.pkl', 'wb'))
工作正常。
有人知道是否可以将spacy与sklearn交叉验证一起使用? 谢谢!
答案 0 :(得分:1)
这不是解决方案,而是一种解决方法。似乎spacy和joblib之间存在一些问题:
如果可以将令牌生成器作为函数保存在目录中的单独文件中,然后将其导入到当前文件中,则可以避免此错误。像这样:
自定义文件 .py
import spacy
nlp = spacy.load('en', disable=['ner', 'parser', 'tagger'])
def spacy_tokenizer(doc):
return [x.orth_ for x in nlp(doc)]
主要 .py
#Other code
...
...
from custom_file import spacy_tokenizer
pipeline = Pipeline([('vectorize', CountVectorizer(tokenizer=spacy_tokenizer)),
('clf', SGDClassifier())])
...
...