我有一个包含星期编号,帐户ID和几个使用情况列的数据。我想将a)按帐户ID分组,b)将每周数据重新采样为每日数据,并c)均匀地插入每日数据(将每周数据除以7),然后将其重新组合在一起。我已经把大部分事情都弄下来了,但是熊猫groupby
使我有些困惑。这也非常慢,这让我觉得这可能不是最佳解决方案。
数据如下:
Account Id year week views stats foo_col
31133 213 2017-03-05 4.0 2.0 11.0
10085 456 2017-03-12 1.0 6.0 3.0
49551 789 2017-03-26 1.0 6.0 27.0
这是我的代码:
def interpolator(mini_df):
mini_df = mini_df[cols_to_interpolate].set_index('year week')
return mini_df.resample('D').ffill().interpolate() / 7
example = list(grp)[0][1]
interpolator(example) # This works perfectly
df.groupby('Account Id').agg(interpolator) # doesn't work
df.groupby('Account Id').transform(interpolator) # doesn't work
for name,group in grp:
group = group[cols_to_interpolate].set_index('year week')
group = group.resample('D').ffill().interpolate() / 7 # doesn't work
for acc_id in df['Account Id'].unique():
mask = df.loc[df['Account Id'] == acc_id]
print(df[mask]) # doesn't work
答案 0 :(得分:2)
我希望您的函数应与groupby
对象链接在一起,例如:
df = (df.set_index('year week')
.groupby('Account Id')[cols_to_interpolate]
.resample('D')
.ffill()
.interpolate() / 7)
评论中的解决方案有所不同-interpolate
适用于每个组:
df.groupby('Account Id').apply(interpolator)