我正在尝试使用Keras(2.2.4)和TensorFlow(1.9.0)作为后端在单个图像上进行预测:
def enigne(data):
img=data
image_shape=img.shape
num_train_samples = 4206
num_val_samples = 916
train_batch_size = 10
val_batch_size = 10
IMAGE_SIZE = 64
IMAGE_CHANNELS = 3
kernel_size = (3, 3)
pool_size = (2, 2)
first_filters = 32
second_filters = 128
image_resize=cv.resize(img,(64,64))
# Loading the model
model = Sequential()
model.add(Conv2D(first_filters, kernel_size, activation='relu', input_shape=(64, 64, 3)))
model.add(Conv2D(first_filters, kernel_size, activation='relu', kernel_regularizer=regularizers.l2(0.001))
model.add(Conv2D(second_filters, kernel_size, activation='relu', kernel_regularizer=regularizers.l2(0.001)))
model.add(MaxPooling2D(pool_size=pool_size))
model.add(Dropout(dropout_conv))
model.add(Flatten())
model.add(Dense(256, activation="relu"))
model.add(Dense(1, activation="sigmoid"))
model.compile(Adam(lr=0.0001), loss='binary_crossentropy',
metrics=['accuracy'])
datagen = ImageDataGenerator(rescale=1.0 / 255)
model.load_weights('stableweights.h5')
y_pred_keras = model.predict_proba(image_resize)
p = []
for i in y_pred_keras:
for k in i:
if k <= 0.421:
p.append(0)
else:
p.append(1)
return p
我遇到这样的错误:
ValueError: Error when checking input: expected conv2d_input to have 4 dimensions, but got array with shape (64, 64, 3)
如何转换为具有适当尺寸的图像以将其输入到Keras模型中?
答案 0 :(得分:1)
Keras模型希望将一批样本作为输入。因此,您需要将第一个轴作为批处理轴:
import numpy as np
image_resize = np.expand_dims(image_resize, axis=0) # shape would be: (1, 64, 64, 3)