我正在开发代码来分析两个变量之间的关系。我正在使用 DataFrame 将变量保存在两列中,如下所示:
column A = 132.54672, 201.3845717, 323.2654551
column B = 51.54671995, 96.38457166, 131.2654551
我尝试使用 statsmodels ,但是它表示我没有足够的样本。
有人可以帮助我吗?我需要定义系数和截距才能计算其他变量。
y = coefficient * x + intercept
答案 0 :(得分:2)
好的,这是使用DataFrame的解决方案。我跳过了导入命令,只显示了相关部分。如果您想知道它们是什么,请给我评论。
我正在使用NumPy的polyfit
进行1阶线性回归。您可以打印拟合(fit
)以获得斜率和截距。 fit[0]
是截距,fit[1]
是斜率(或您所称的系数)
column_A= [132.54672, 201.3845717, 323.2654551]
column_B= [51.54671995, 96.38457166, 131.2654551]
df = pd.DataFrame({'A': column_A, 'B': column_B})
fit = np.poly1d(np.polyfit(df['A'], df['B'], 1))
A_mesh = np.linspace(min(df['A']), max(df['A']), 100)
plt.plot(df['A'], df['B'], 'bx', label='Data', ms=10)
plt.plot(A_mesh, fit(A_mesh), '-b', label='Linear fit')
print (fit)
# 0.4028 x + 4.833
答案 1 :(得分:2)
您可以使用curve_fit
进行此操作:
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
x = np.array([132.54672, 201.3845717, 323.2654551])
y = np.array([51.54671995, 96.38457166, 131.2654551])
linear = lambda x, a, b: a * x + b
popt, pcov = curve_fit(linear, x, y, p0=[1, 1])
plt.plot(x, y, "rx")
plt.plot(x, linear(x, *popt), "b-")
plt.title("f(x)=a*x+b, a={:.2f}, b={:.2f}".format(*popt))
plt.show()
图:
答案 2 :(得分:0)
除了以前的出色答案外,这是一个图形钳工,具有3D散点图,3D表面图和轮廓图。
import numpy, scipy, scipy.optimize
import matplotlib
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm # to colormap 3D surfaces from blue to red
import matplotlib.pyplot as plt
graphWidth = 800 # units are pixels
graphHeight = 600 # units are pixels
# 3D contour plot lines
numberOfContourLines = 16
def SurfacePlot(func, data, fittedParameters):
f = plt.figure(figsize=(graphWidth/100.0, graphHeight/100.0), dpi=100)
matplotlib.pyplot.grid(True)
axes = Axes3D(f)
x_data = data[0]
y_data = data[1]
z_data = data[2]
xModel = numpy.linspace(min(x_data), max(x_data), 20)
yModel = numpy.linspace(min(y_data), max(y_data), 20)
X, Y = numpy.meshgrid(xModel, yModel)
Z = func(numpy.array([X, Y]), *fittedParameters)
axes.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=1, antialiased=True)
axes.scatter(x_data, y_data, z_data) # show data along with plotted surface
axes.set_title('Surface Plot (click-drag with mouse)') # add a title for surface plot
axes.set_xlabel('X Data') # X axis data label
axes.set_ylabel('Y Data') # Y axis data label
axes.set_zlabel('Z Data') # Z axis data label
plt.show()
plt.close('all') # clean up after using pyplot or else thaere can be memory and process problems
def ContourPlot(func, data, fittedParameters):
f = plt.figure(figsize=(graphWidth/100.0, graphHeight/100.0), dpi=100)
axes = f.add_subplot(111)
x_data = data[0]
y_data = data[1]
z_data = data[2]
xModel = numpy.linspace(min(x_data), max(x_data), 20)
yModel = numpy.linspace(min(y_data), max(y_data), 20)
X, Y = numpy.meshgrid(xModel, yModel)
Z = func(numpy.array([X, Y]), *fittedParameters)
axes.plot(x_data, y_data, 'o')
axes.set_title('Contour Plot') # add a title for contour plot
axes.set_xlabel('X Data') # X axis data label
axes.set_ylabel('Y Data') # Y axis data label
CS = matplotlib.pyplot.contour(X, Y, Z, numberOfContourLines, colors='k')
matplotlib.pyplot.clabel(CS, inline=1, fontsize=10) # labels for contours
plt.show()
plt.close('all') # clean up after using pyplot or else thaere can be memory and process problems
def ScatterPlot(data):
f = plt.figure(figsize=(graphWidth/100.0, graphHeight/100.0), dpi=100)
matplotlib.pyplot.grid(True)
axes = Axes3D(f)
x_data = data[0]
y_data = data[1]
z_data = data[2]
axes.scatter(x_data, y_data, z_data)
axes.set_title('Scatter Plot (click-drag with mouse)')
axes.set_xlabel('X Data')
axes.set_ylabel('Y Data')
axes.set_zlabel('Z Data')
plt.show()
plt.close('all') # clean up after using pyplot or else thaere can be memory and process problems
def func(data, a, alpha, beta):
t = data[0]
p_p = data[1]
return a * (t**alpha) * (p_p**beta)
if __name__ == "__main__":
xData = numpy.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0])
yData = numpy.array([11.0, 12.1, 13.0, 14.1, 15.0, 16.1, 17.0, 18.1, 90.0])
zData = numpy.array([1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.0, 9.9])
data = [xData, yData, zData]
initialParameters = [1.0, 1.0, 1.0] # these are the same as scipy default values in this example
# here a non-linear surface fit is made with scipy's curve_fit()
fittedParameters, pcov = scipy.optimize.curve_fit(func, [xData, yData], zData, p0 = initialParameters)
ScatterPlot(data)
SurfacePlot(func, data, fittedParameters)
ContourPlot(func, data, fittedParameters)
print('fitted prameters', fittedParameters)
modelPredictions = func(data, *fittedParameters)
absError = modelPredictions - zData
SE = numpy.square(absError) # squared errors
MSE = numpy.mean(SE) # mean squared errors
RMSE = numpy.sqrt(MSE) # Root Mean Squared Error, RMSE
Rsquared = 1.0 - (numpy.var(absError) / numpy.var(zData))
print('RMSE:', RMSE)
print('R-squared:', Rsquared)
答案 3 :(得分:0)
使用scipy.stats
:
import pandas as pd
from scipy import stats
import matplotlib.pyplot as plt
column_A= [132.54672, 201.3845717, 323.2654551]
column_B= [51.54671995, 96.38457166, 131.2654551]
df = pd.DataFrame({'A': column_A, 'B': column_B})
reg = stats.linregress(df.A, df.B)
plt.plot(df.A, df.B, 'bo', label='Data')
plt.plot(df.A, reg.intercept + reg.slope * df.A, 'k-', label='Linear Regression')
plt.xlabel('A')
plt.ylabel('B')
plt.legend()
plt.show()
您还可以从dir(reg)
中找到有用的方法,其中包括
.intercept
.pvalue
.rvalue
.slope
.stderr
请参见here。