我使用Keras来完成细分任务。
groundtruth贴图是二进制图像,请注意,黑色表示背景,白色表示对象。
因此,我在Keras中使用datagenerator如下,在此之前,我将0设置为背景像素,将1设置为对象:
train_label_datagen = ImageDataGenerator(
horizontal_flip= True,
)
train_label_generaror = train_label_datagen.flow_from_directory(
directory=os.path.join(FLAGS.dataset_dir, FLAGS.cropped_dir, "training",
FLAGS.labels_folder_name),
target_size=(FLAGS.resize_size, FLAGS.resize_size),
class_mode= None,
color_mode= 'grayscale',
batch_size= FLAGS.batch_size,
seed = FLAGS.seed,
shuffle= False
)
model.compile函数的详细信息如下:
sgd = SGD(lr= FLAGS.lr, decay=FLAGS.decay, momentum=FLAGS.momentum,
nesterov=True)
model.compile(optimizer= sgd,
loss = losses.sparse_categorical_crossentropy,
metrics=['acc', miou])
model.output是一个概率图。
我的问题是:训练模型时出现错误
tensorflow.python.framework.errors_impl.InvalidArgumentError: Incompatible shapes: [602112] vs. [12,224,224]
[[Node: metrics/acc/Equal = Equal[T=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:GPU:0"](metrics/acc/Reshape, metrics/acc/Cast)]]
[[Node: metrics/miou/confusion_matrix/assert_non_negative_1/assert_less_equal/Assert/AssertGuard/Assert/Switch_1/_167 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_544_m...t/Switch_1", tensor_type=DT_INT64, _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]]
我尝试将损失更改为“ binary_crossentropy”,并将output.activation更改为“ Sigmoid”,然后它起作用了。
所以我想知道是什么导致了这个错误。
答案 0 :(得分:0)
通过尝试不同的方式,并分析了 confusion_matrix ,我已经解决了问题。
代码如下:
import keras.backend as K
from tensorflow.contrib.metrics import confusion_matrix
def custom_accuracy(y_true, y_pred, nb_classes):
class_labels= K.reshape(y_true, shape=[-1])
class_pred = K.resshape(y_pred, axis= -1)
class_pred = K.reshape(class_pred, shape=[-1])
confusion_matrix = confusion_matrix(labels= class_labels,
prediction= class_pred,
num_classes= nb_classes)
TP = 0
all = 0
for class_index in range(0, nb_classes):
TP += confusion_matrix[class_index, class_index]
all += confusion_matrix[class_index]
return K.sum(TP) / K.sum(all)
通过自定义的准确性指标,它可以正常工作。