最近,我尝试通过阅读官方教程来学习如何在多个GPU上使用Tensorflow。但是,我有些困惑。以下代码是官方教程的一部分,该教程计算单个GPU的损耗。
def tower_loss(scope, images, labels):
# Build inference Graph.
logits = cifar10.inference(images)
# Build the portion of the Graph calculating the losses. Note that we will
# assemble the total_loss using a custom function below.
_ = cifar10.loss(logits, labels)
# Assemble all of the losses for the current tower only.
losses = tf.get_collection('losses', scope)
# Calculate the total loss for the current tower.
total_loss = tf.add_n(losses, name='total_loss')
# Attach a scalar summary to all individual losses and the total loss; do the
# same for the averaged version of the losses.
for l in losses + [total_loss]:
# Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
# session. This helps the clarity of presentation on tensorboard.
loss_name = re.sub('%s_[0-9]*/' % cifar10.TOWER_NAME, '', l.op.name)
tf.summary.scalar(loss_name, l)
return total_loss
培训过程如下。
def train():
with tf.device('/cpu:0'):
# Create a variable to count the number of train() calls. This equals the
# number of batches processed * FLAGS.num_gpus.
global_step = tf.get_variable(
'global_step', [],
initializer=tf.constant_initializer(0), trainable=False)
# Calculate the learning rate schedule.
num_batches_per_epoch = (cifar10.NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN /
FLAGS.batch_size / FLAGS.num_gpus)
decay_steps = int(num_batches_per_epoch * cifar10.NUM_EPOCHS_PER_DECAY)
# Decay the learning rate exponentially based on the number of steps.
lr = tf.train.exponential_decay(cifar10.INITIAL_LEARNING_RATE,
global_step,
decay_steps,
cifar10.LEARNING_RATE_DECAY_FACTOR,
staircase=True)
# Create an optimizer that performs gradient descent.
opt = tf.train.GradientDescentOptimizer(lr)
# Get images and labels for CIFAR-10.
images, labels = cifar10.distorted_inputs()
batch_queue = tf.contrib.slim.prefetch_queue.prefetch_queue(
[images, labels], capacity=2 * FLAGS.num_gpus)
# Calculate the gradients for each model tower.
tower_grads = []
with tf.variable_scope(tf.get_variable_scope()):
for i in xrange(FLAGS.num_gpus):
with tf.device('/gpu:%d' % i):
with tf.name_scope('%s_%d' % (cifar10.TOWER_NAME, i)) as scope:
# Dequeues one batch for the GPU
image_batch, label_batch = batch_queue.dequeue()
# Calculate the loss for one tower of the CIFAR model. This function
# constructs the entire CIFAR model but shares the variables across
# all towers.
loss = tower_loss(scope, image_batch, label_batch)
# Reuse variables for the next tower.
tf.get_variable_scope().reuse_variables()
# Retain the summaries from the final tower.
summaries = tf.get_collection(tf.GraphKeys.SUMMARIES, scope)
但是,我对关于“ for xrange(FLAGS.num_gpus)”中的for循环感到困惑。看来我必须从batch_queue获取新的批处理图像并计算每个梯度。我认为这个过程是序列化的,而不是并行的。我自己的理解是否有误?顺便说一句,我还可以使用迭代器将图像提供给模型,而不是出队吗?
谢谢大家!
答案 0 :(得分:1)
这是Tensorflow编码模型的常见误解。 您在此处显示的是计算图的构造,而不是实际执行。
块:
for i in xrange(FLAGS.num_gpus):
with tf.device('/gpu:%d' % i):
with tf.name_scope('%s_%d' % (cifar10.TOWER_NAME, i)) as scope:
# Dequeues one batch for the GPU
image_batch, label_batch = batch_queue.dequeue()
# Calculate the loss for one tower of the CIFAR model. This function
# constructs the entire CIFAR model but shares the variables across
# all towers.
loss = tower_loss(scope, image_batch, label_batch)
翻译为:
For each GPU device (`for i in range..` & `with device...`):
- build operations needed to dequeue a batch
- build operations needed to run the batch through the network and compute the loss
请注意如何通过tf.get_variable_scope().reuse_variables()
告诉图形,用于图形GPU的变量必须在所有图形之间共享(即,多个设备上的所有图形“重用”相同的变量)。
所有这些实际上都不会运行一次网络(请注意没有sess.run()
):您只是在说明数据必须如何流动。
然后,当您开始实际训练时(我想您在这里复制代码时就错过了这段代码),每个GPU都会提取自己的批处理并产生每塔损失。我猜这些损失是在后续代码中的某处平均的,平均值是传递给优化器的损失。
直到将塔架损耗平均到一起,一切都与其他设备无关,因此可以并行进行批处理和计算损耗。然后仅进行一次渐变和参数更新,更新变量,并重复该循环。
因此,要回答您的问题,否,每批损失计算未序列化,但是由于这是同步分布式计算,因此您需要从所有GPU收集所有损失,然后才能继续操作。梯度计算和参数更新,因此您的图上仍有 some 部分不能独立。