我创建了一个opencv过滤器,它可以检测一个人是否对Kurento WebRTC框架眨眼。我的代码可在独立的opencv应用程序中使用。但是,一旦我转换为Kurento的opencv过滤器,它就会开始播放。当编译模块/过滤器时没有优化标志时,它将短暂地检测人脸并在眼睛周围绘制轮廓。但是,在使用优化标志编译模块/过滤器之后,性能有所提高,但是没有检测到人脸。这是过滤器中的代码:
void BlinkDetectorOpenCVImpl::process(cv::Mat &mat) {
std::vector <dlib::rectangle> faces;
// Just resize input image if you want
resize(mat, mat, Size(800, 450));
cv_image <rgb_alpha_pixel> cimg(mat);
dlib::array2d<unsigned char> img_gray;
dlib::assign_image(img_gray, cimg);
faces = detector(img_gray);
std::cout << "XXXXXXXXXXXXXXXXXXXXX FACES: " << faces.size() << std::endl;
std::vector <full_object_detection> shapes;
for (unsigned long i = 0; i < faces.size(); ++i) {
full_object_detection shape = pose_model(cimg, faces[i]);
std::vector <Point> left_eye_points = get_points_for_eye(shape, LEFT_EYE_START, LEFT_EYE_END);
std::vector <Point> right_eye_points = get_points_for_eye(shape, RIGHT_EYE_START, RIGHT_EYE_END);
double left_eye_ear = get_eye_aspect_ratio(left_eye_points);
double right_eye_ear = get_eye_aspect_ratio(right_eye_points);
double ear = (left_eye_ear + right_eye_ear) / 2.0;
// Draw left eye
std::vector <std::vector<Point>> contours;
contours.push_back(left_eye_points);
std::vector <std::vector<Point>> hull(1);
convexHull(contours[0], hull[0]);
drawContours(mat, hull, -1, Scalar(0, 255, 0));
// Draw right eye
contours[0] = right_eye_points;
convexHull(contours[0], hull[0]);
drawContours(mat, hull, -1, Scalar(0, 255, 0));
if (ear < EYE_AR_THRESH) {
counter++;
} else {
if (counter >= EYE_AR_CONSEC_FRAMES) {
total++;
/* std::string sJson = "{\"blink\": \"blink\"}";
try
{
onResult event(getSharedFromThis(), onResult::getName(), sJson);
signalonResult(event);
}
catch (std::bad_weak_ptr &e)
{
}*/
}
counter = 0;
}
cv::putText(mat, (boost::format{"Blinks: %d"} % total).str(), cv::Point(10, 30),
cv::FONT_HERSHEY_SIMPLEX,
0.7, Scalar(0, 0, 255), 2);
cv::putText(mat, (boost::format{"EAR: %.2f"} % ear).str(), cv::Point(300, 30),
cv::FONT_HERSHEY_SIMPLEX,
0.7, Scalar(0, 0, 255), 2);
}
}
} /* blinkdetector */
答案 0 :(得分:0)
我能够解决自己的问题。我发现,与其将图像调整为任意分辨率,不如将其调整为实际图像分辨率的一半宽度和一半高度。将图像调整为较小尺寸可使Dlib人脸检测快速进行。因此,这是我为解决此问题所做的事情:
Mat tmpMat = mat.clone();
resize(tmpMat, tmpMat, Size(tmpMat.size().width / 2, tmpMat.size().height / 2));
我不得不将Kurento发送的图像克隆到我的方法中,因为由于某些奇怪的原因,原始Mat在用cv_image
转换为Dlib图像时不显示轮廓。