从熊猫列的列表中删除停用词时出现LookupError

时间:2018-12-18 06:28:58

标签: python pandas text nltk

我有100万条记录,如下所示

样本DF1:-

  articles_urlToImage   feed_status status    keyword
   hhtps://rqqkf.com    untagged     tag      the apple,a mobile phone
   hhtps://hqkf.com    tagged       ingore    blackberry, the a phone 
   hhtps://hqkf.com     untagged     tag      amazon, an shopping site

现在我要删除停用词和一些自定义停用词,如下所示

自定义停用词= ['phone','site'](我大约有35个自定义停用词)

预期投入

 articles_urlToImage    feed_status status    keyword
   hhtps://rqqkf.com    untagged     tag     apple,mobile
   hhtps://hqkf.com     tagged       ingore    blackberry 
   hhtps://hqkf.com     untagged     tag      amazon,shopping 

我尝试删除停用词,但出现错误

代码

import nltk
import string
from nltk.corpus import stopwords
stop = stopwords.words('english') 

df1['keyword'] = df1['keyword'].apply(lambda x: [item for item in x if item not in stop])

错误

  /usr/local/lib/python3.6/dist-packages/pandas/core/generic.py in __getattr__(self, name)
   3612             if name in self._info_axis:
   3613                 return self[name]
-> 3614             return object.__getattribute__(self, name)
   3615 
   3616     def __setattr__(self, name, value):

AttributeError: 'Series' object has no attribute 'split'

1 个答案:

答案 0 :(得分:0)

您可以使用:

from nltk.corpus import stopwords
stop = stopwords.words('english') 
custom  = ['phone','site']
#join lists together
stop = custom + stop

#remove punctuation, split by whitespace and remove stop words
df1['keyword'] = (df1['keyword'].str.replace(r'[^\w\s]+', ' ')
                    .apply(lambda x: [item for item in x.split() if item not in stop]))
print (df1)
  articles_urlToImage feed_status  status             keyword
0   hhtps://rqqkf.com    untagged     tag     [apple, mobile]
1    hhtps://hqkf.com      tagged  ingore        [blackberry]
2    hhtps://hqkf.com    untagged     tag  [amazon, shopping]