在Python中使用TF-IDF,NGram和余弦相似性进行字符串匹配

时间:2018-12-18 06:14:52

标签: python tf-idf n-gram cosine-similarity

我正在做我的第一个主要数据科学项目。我正在尝试将一个来源的大量数据之间的名称匹配到另一个来源的已清理字典中。我正在使用this字符串匹配博客作为指南。

我正在尝试使用两个不同的数据集。不幸的是,我似乎无法获得良好的结果,而且我认为我没有适当地应用它。

代码:

import pandas as pd, numpy as np, re, sparse_dot_topn.sparse_dot_topn as ct
from sklearn.feature_extraction.text import TfidfVectorizer
from scipy.sparse import csr_matrix


df_dirty = {"name":["gogle","bing","amazn","facebook","fcbook","abbasasdfzz","zsdfzl","gogle","bing","amazn","facebook","fcbook","abbasasdfzz","zsdfzl"]}

df_clean = {"name":["google","bing","amazon","facebook"]}

print (df_dirty["name"])
print (df_clean["name"])


def ngrams(string, n=3):
    string = (re.sub(r'[,-./]|\sBD',r'', string)).upper()
    ngrams = zip(*[string[i:] for i in range(n)])
    return [''.join(ngram) for ngram in ngrams]


def awesome_cossim_top(A, B, ntop, lower_bound=0):
    # force A and B as a CSR matrix.
    # If they have already been CSR, there is no overhead
    A = A.tocsr()
    B = B.tocsr()
    M, _ = A.shape
    _, N = B.shape

    idx_dtype = np.int32

    nnz_max = M * ntop

    indptr = np.zeros(M + 1, dtype=idx_dtype)
    indices = np.zeros(nnz_max, dtype=idx_dtype)
    data = np.zeros(nnz_max, dtype=A.dtype)

    ct.sparse_dot_topn(
        M, N, np.asarray(A.indptr, dtype=idx_dtype),
        np.asarray(A.indices, dtype=idx_dtype),
        A.data,
        np.asarray(B.indptr, dtype=idx_dtype),
        np.asarray(B.indices, dtype=idx_dtype),
        B.data,
        ntop,
        lower_bound,
        indptr, indices, data)

    return csr_matrix((data, indices, indptr), shape=(M, N))


def get_matches_df(sparse_matrix, name_vector, top=5):
    non_zeros = sparse_matrix.nonzero()

    sparserows = non_zeros[0]
    sparsecols = non_zeros[1]

    if top:
        print (top)
        nr_matches = top
    else:
        print (sparsecols.size)
        nr_matches = sparsecols.size

    left_side = np.empty([nr_matches], dtype=object)
    right_side = np.empty([nr_matches], dtype=object)
    similairity = np.zeros(nr_matches)

    for index in range(0, nr_matches):
        left_side[index] = name_vector[sparserows[index]]
        right_side[index] = name_vector[sparsecols[index]]
        similairity[index] = sparse_matrix.data[index]

    return pd.DataFrame({'left_side': left_side,
                         'right_side': right_side,
                         'similairity': similairity})


company_names = df_clean['name']
vectorizer = TfidfVectorizer(min_df=1, analyzer=ngrams)
tf_idf_matrix = vectorizer.fit_transform(company_names)


import time
t1 = time.time()
matches = awesome_cossim_top(tf_idf_matrix, tf_idf_matrix.transpose(), 4, 0.8)
t = time.time()-t1
print("SELFTIMED:", t)



matches_df = get_matches_df(matches, company_names, top=4)
matches_df = matches_df[matches_df['similairity'] < 0.99999] # Remove all exact matches


with pd.option_context('display.max_rows', None, 'display.max_columns', None):
    print(matches_df)

预期结果如下:

  • gogle = google
  • amazn =亚马逊
  • fcbook = facebook

1 个答案:

答案 0 :(得分:2)

您可以直接从sparse_dot_topn库中导入awesome_cossim_top函数。

使用以下方法更改函数get_matches_df:

def get_matches_df(sparse_matrix, A, B, top=100):
    non_zeros = sparse_matrix.nonzero()

    sparserows = non_zeros[0]
    sparsecols = non_zeros[1]

    if top:
        nr_matches = top
    else:
        nr_matches = sparsecols.size

    left_side = np.empty([nr_matches], dtype=object)
    right_side = np.empty([nr_matches], dtype=object)
    similairity = np.zeros(nr_matches)

    for index in range(0, nr_matches):
        left_side[index] = A[sparserows[index]]
        right_side[index] = B[sparsecols[index]]
        similairity[index] = sparse_matrix.data[index]

    return pd.DataFrame({'left_side': left_side,
                         'right_side': right_side,
                         'similairity': similairity})

现在您可以执行以下代码:

df_dirty = {"name":["gogle","bing","amazn","facebook","fcbook","abbasasdfzz","zsdfzl"]}

df_clean = {"name":["google","bing","amazon","facebook"]}

print (df_dirty["name"])
print (df_clean["name"])

vectorizer = TfidfVectorizer(min_df=1, analyzer=ngrams)
tf_idf_matrix_clean = vectorizer.fit_transform(df_clean['name'])
tf_idf_matrix_dirty = vectorizer.transform(df_dirty['name'])

t1 = time.time()
matches = awesome_cossim_top(tf_idf_matrix_dirty, tf_idf_matrix_clean.transpose(), 1, 0)
t = time.time()-t1
print("SELFTIMED:", t)

matches_df = get_matches_df(matches, df_dirty['name'], df_clean['name'], top=0)

with pd.option_context('display.max_rows', None, 'display.max_columns', None):
    print(matches_df)

基本上,您发现的示例在其自己的数组中标识出重复项,并且您想使用2个源而不是一个。

希望有帮助!