将pandas DataFrame列拆分为OneHot / Binary列

时间:2018-12-18 01:29:01

标签: python pandas dataframe machine-learning scikit-learn

我正在为SciKit格式化一个DataFrame。学习PCA看起来像这样:

datetime |  mood |  activities |  notes

8/27/2017 |  "good" | ["friends", "party", "gaming"] | NaN

8/28/2017 |  "meh" |  ["work", "friends", "good food"] | "Stuff stuff"

8/29/2017 |  "bad" |  ["work", "travel"] |  "Fell off my bike"

...等等

我想将其转换为此,我认为这对于ML工作会更好:

datetime |  mood |  friends | party | gaming | work | good food | travel |  notes

8/27/2017 |  "good" | True | True | True | False | False | False | NaN

8/28/2017 |  "meh" |  True | False | False | True | True | False | "Stuff stuff"

8/29.2017 | "bad" | False | False | False | False | True | False | True | "Fell off my bike"

我已经尝试了here概述的方法,该方法只为我提供了所有活动的左对齐矩阵。这些列没有意义。如果我尝试将columns传递给DataFrame构造函数,则会收到错误消息:“传递了26列,传递的数据有9列。我相信这是因为即使我有26个离散事件,但我最多如果同时在一天中完成的时间是9,如果在该特定行中找不到该列,是否可以用0 / False填充呢?

2 个答案:

答案 0 :(得分:2)

这是一个完整的解决方案,可以分析混乱的输出以及所有内容:

from ast import literal_eval
import numpy as np
import pandas as pd

# the raw data

d = '''datetime |  mood |  activities |  notes

8/27/2017 |  "good" | ["friends", "party", "gaming"] | NaN

8/28/2017 |  "meh" |  ["work", "friends", "good food"] | "Stuff stuff"

8/29/2017 |  "bad" |  ["work", "travel"] |  "Fell off my bike"'''

# parse the raw data
df = pd.read_csv(pd.compat.StringIO(d), sep='\s*\|\s*', engine='python')

# parse the lists of activities (which are still strings)
acts = df['activities'].apply(literal_eval)

# get the unique activities
actcols = np.unique([a for al in acts for a in al])

# assemble the desired one hot array from the activities
actarr = np.array([np.in1d(actcols, al) for al in acts])
actdf = pd.DataFrame(actarr, columns=actcols)

# stick the dataframe with the one hot array onto the main dataframe
df = pd.concat([df.drop(columns='activities'), actdf], axis=1)

# fancy print
with pd.option_context("display.max_columns", 20, 'display.width', 9999):
    print(df)

输出:

    datetime    mood               notes  friends  gaming  good food  party  travel   work
0  8/27/2017  "good"                 NaN     True    True      False   True   False  False
1  8/28/2017   "meh"       "Stuff stuff"     True   False       True  False   False   True
2  8/29/2017   "bad"  "Fell off my bike"    False   False      False  False    True   True

答案 1 :(得分:2)

您可以简单地使用get_dummies

让我们假设这个数据帧:

df = pd.DataFrame({'datetime':pd.date_range('2017-08-27', '2017-08-29'),
              'mood':['good','meh','bad'],'activities':[['friends','party','gaming'],
                                                        ["work", "friends", "good food"],
                                                        ["work", "travel"]],
              'notes':[np.nan, 'stuff stuff','fell off my bike']})
df.set_index(['datetime'], inplace=True)

            mood      activities                notes
datetime            
2017-08-27  good    [friends, party, gaming]    NaN
2017-08-28  meh     [work, friends, good food]  stuff stuff
2017-08-29  bad     [work, travel]              fell off my bike

concatget_dummies

df2 = pd.concat([df[['mood','notes']], pd.get_dummies(df['activities'].apply(pd.Series),
                                                      prefix='activity')], axis=1)


            mood    notes   activity_friends    activity_work   activity_friends    activity_party  activity_travel activity_gaming activity_good food
datetime                                    
2017-08-27  good    NaN             1               0                 0                 1                   0                   1                   0
2017-08-28  meh     stuff stuff     0               1                 1                 0                   0                   0                   1
2017-08-29  bad    fell off my bike 0               1                 0                 0                   1                   0                   0

如果您想使用loc,则将其更改为布尔值:

df2.loc[:,df2.columns[2:]] = df2.loc[:,df2.columns[2:]].astype(bool)