我需要将一个非常“高”的两列数组写入文本文件,而且速度非常慢。我发现,如果将数组重塑为更宽的数组,则写入速度会更快。 例如
import time
import numpy as np
dataMat1 = np.random.rand(1000,1000)
dataMat2 = np.random.rand(2,500000)
dataMat3 = np.random.rand(500000,2)
start = time.perf_counter()
with open('test1.txt','w') as f:
np.savetxt(f,dataMat1,fmt='%g',delimiter=' ')
end = time.perf_counter()
print(end-start)
start = time.perf_counter()
with open('test2.txt','w') as f:
np.savetxt(f,dataMat2,fmt='%g',delimiter=' ')
end = time.perf_counter()
print(end-start)
start = time.perf_counter()
with open('test3.txt','w') as f:
np.savetxt(f,dataMat3,fmt='%g',delimiter=' ')
end = time.perf_counter()
print(end-start)
在三个数据矩阵中元素数量相同的情况下,为什么最后一个要比其他两个要耗时得多?有什么方法可以加快“高”数据数组的写入速度?
答案 0 :(得分:3)
savetxt
的代码是Python并且可以访问。基本上,它对每一行/每一行进行格式化写入。实际上确实如此
for row in arr:
f.write(fmt%tuple(row))
其中fmt
源自您的fmt
和数组的形状,例如
'%g %g %g ...'
因此,它正在为数组的每一行写文件。行格式也需要一些时间,但是它是使用Python代码在内存中完成的。
我希望loadtxt/genfromtxt
将显示相同的时间模式-读取许多行需要更长的时间。
pandas
的csv加载速度更快。我尚未看到有关其写入速度的任何讨论。
答案 1 :(得分:3)
与hpaulj pointed out一样,savetxt
是looping through the rows of X
,并分别设置每一行的格式:
for row in X:
try:
v = format % tuple(row) + newline
except TypeError:
raise TypeError("Mismatch between array dtype ('%s') and "
"format specifier ('%s')"
% (str(X.dtype), format))
fh.write(v)
我认为这里的主要杀手is是所有字符串插值调用。 如果我们将所有字符串插值打包到一个调用中,事情就会快得多:
with open('/tmp/test4.txt','w') as f:
fmt = ' '.join(['%g']*dataMat3.shape[1])
fmt = '\n'.join([fmt]*dataMat3.shape[0])
data = fmt % tuple(dataMat3.ravel())
f.write(data)
import io
import time
import numpy as np
dataMat1 = np.random.rand(1000,1000)
dataMat2 = np.random.rand(2,500000)
dataMat3 = np.random.rand(500000,2)
start = time.perf_counter()
with open('/tmp/test1.txt','w') as f:
np.savetxt(f,dataMat1,fmt='%g',delimiter=' ')
end = time.perf_counter()
print(end-start)
start = time.perf_counter()
with open('/tmp/test2.txt','w') as f:
np.savetxt(f,dataMat2,fmt='%g',delimiter=' ')
end = time.perf_counter()
print(end-start)
start = time.perf_counter()
with open('/tmp/test3.txt','w') as f:
np.savetxt(f,dataMat3,fmt='%g',delimiter=' ')
end = time.perf_counter()
print(end-start)
start = time.perf_counter()
with open('/tmp/test4.txt','w') as f:
fmt = ' '.join(['%g']*dataMat3.shape[1])
fmt = '\n'.join([fmt]*dataMat3.shape[0])
data = fmt % tuple(dataMat3.ravel())
f.write(data)
end = time.perf_counter()
print(end-start)
报告
0.1604848340011813
0.17416274400056864
0.6634929459996783
0.16207673999997496