Kosaraju的SCC算法,非递归

时间:2018-12-17 11:12:57

标签: python recursion graph-theory depth-first-search kosaraju-algorithm

我有一个Kosaraju算法的实现,可以在Python中找到SCC。下面的代码包含一个递归版本(适合小型测试用例)和一个非递归版本(由于实际数据集的大小,我最终需要使用它)。

我已经在一些测试数据集中运行了递归和非递归版本,并获得了正确的答案。但是,在我最终需要使用的更大数据集上运行它会产生错误的结果。遍历真实数据并不是真正的选择,因为它包含将近一百万个节点。

我的问题是我不知道如何从这里继续。我的怀疑是我要么在测试用例中忘记了某个图形星座图案例,要么对这种算法的工作原理有更根本的误解。

#!/usr/bin/env python3

import heapq


class Node():
    """A class to represent nodes in a DirectedGraph. It has attributes for
    performing DFS."""

    def __init__(self, i):
        self.id = i
        self.edges = []
        self.rev_edges = []
        self.explored = False
        self.fin_time = 0
        self.leader = 0

    def add_edge(self, edge_id):
        self.edges.append(edge_id)

    def add_rev_edge(self, edge_id):
        self.rev_edges.append(edge_id)

    def mark_explored(self):
        self.explored = True

    def set_leader(self, leader_id):
        self.leader = leader_id

    def set_fin_time(self, fin_time):
        self.fin_time = fin_time


class DirectedGraph():
    """A class to represent directed graphs via the adjacency list approach.
    Each dictionary entry is a Node."""

    def __init__(self, length, list_of_edges):
        self.nodes = {}
        self.nodes_by_fin_time = {}
        self.length = length
        self.fin_time = 1  # counter for the finishing time
        self.leader_count = 0  # counter for the size of leader nodes
        self.scc_heapq = []  # heapq to store the ssc by size
        self.sccs_computed = False

        for n in range(1, length + 1):
            self.nodes[str(n)] = Node(str(n))

        for n in list_of_edges:
            ns = n[0].split(' ')
            self.nodes[ns[0]].add_edge(ns[1])
            self.nodes[ns[1]].add_rev_edge(ns[0])

    def n_largest_sccs(self, n):
        if not self.sccs_computed:
            self.compute_sccs()

        return heapq.nlargest(n, self.scc_heapq)

    def compute_sccs(self):
        """First compute the finishing times and the resulting order of nodes
        via a DFS loop. Second use that new order to compute the SCCs and order
        them by their size."""

        # Go through the given graph in reverse order, computing the finishing
        # times of each node, and create a second graph that uses the finishing
        # times as the IDs.
        i = self.length
        while i > 0:
            node = self.nodes[str(i)]
            if not node.explored:
                self.dfs_fin_times(str(i))
            i -= 1

        # Populate the edges of the nodes_by_fin_time
        for n in self.nodes.values():
            for e in n.edges:
                e_head_fin_time = self.nodes[e].fin_time
                self.nodes_by_fin_time[n.fin_time].add_edge(e_head_fin_time)

        # Use the nodes ordered by finishing times to calculate the SCCs.
        i = self.length
        while i > 0:
            self.leader_count = 0
            node = self.nodes_by_fin_time[str(i)]
            if not node.explored:
                self.dfs_leaders(str(i))

            heapq.heappush(self.scc_heapq, (self.leader_count, node.id))
            i -= 1

        self.sccs_computed = True

    def dfs_fin_times(self, start_node_id):
        stack = [self.nodes[start_node_id]]

        # Perform depth-first search along the reversed edges of a directed
        # graph. While doing this populate the finishing times of the nodes
        # and create a new graph from those nodes that uses the finishing times
        # for indexing instead of the original IDs.
        while len(stack) > 0:
            curr_node = stack[-1]
            explored_rev_edges = 0
            curr_node.mark_explored()

            for e in curr_node.rev_edges:
                rev_edge_head = self.nodes[e]
                # If the head of the rev_edge has already been explored, ignore
                if rev_edge_head.explored:
                    explored_rev_edges += 1
                    continue
                else:
                    stack.append(rev_edge_head)

            # If the current node has no valid, unexplored outgoing reverse
            # edges, pop it from the stack, populate the fin time, and add it
            # to the new graph.
            if len(curr_node.rev_edges) - explored_rev_edges == 0:
                sink_node = stack.pop()
                # The fin time is 0 if that node has not received a fin time.
                # Prevents dealing with the same node twice here.
                if sink_node and sink_node.fin_time == 0:
                    sink_node.set_fin_time(str(self.fin_time))
                    self.nodes_by_fin_time[str(self.fin_time)] = \
                        Node(str(self.fin_time))
                    self.fin_time += 1

    def dfs_leaders(self, start_node_id):
        stack = [self.nodes_by_fin_time[start_node_id]]
        while len(stack) > 0:
            curr_node = stack.pop()
            curr_node.mark_explored()
            self.leader_count += 1

            for e in curr_node.edges:
                if not self.nodes_by_fin_time[e].explored:
                    stack.append(self.nodes_by_fin_time[e])

###### Recursive verions below ###################################

    def dfs_fin_times_rec(self, start_node_id):
        curr_node = self.nodes[start_node_id]
        curr_node.mark_explored()
        for e in curr_node.rev_edges:
            if not self.nodes[e].explored:
                self.dfs_fin_times_rec(e)

        curr_node.set_fin_time(str(self.fin_time))
        self.nodes_by_fin_time[str(self.fin_time)] = Node(str(self.fin_time))
        self.fin_time += 1

    def dfs_leaders_rec(self, start_node_id):
        curr_node = self.nodes_by_fin_time[start_node_id]
        curr_node.mark_explored()
        for e in curr_node.edges:
            if not self.nodes_by_fin_time[e].explored:
                self.dfs_leaders_rec(e)

        self.leader_count += 1

要运行:

#!/usr/bin/env python3

import utils
from graphs import scc_computation

# data = utils.load_tab_delimited_file('data/SCC.txt')
data = utils.load_tab_delimited_file('data/SCC_5.txt')

# g = scc_computation.DirectedGraph(875714, data)
g = scc_computation.DirectedGraph(11, data)

g.compute_sccs()

# for e, v in g.nodes.items():
#     print(e, v.fin_time)

# for e, v in g.nodes_by_fin_time.items():
#     print(e, v.edges)

print(g.n_largest_sccs(20))

最复杂的测试用例(SCC_5.txt):

1 5
1 4
2 3
2 11
2 6
3 7
4 2
4 8
4 10
5 7
5 5
5 3
6 8
6 11
7 9
8 2
8 8
9 3
10 1
11 9
11 6

该测试用例的绘制:https://imgur.com/a/LA3ObpN

这会产生4个SCC:

  • 底部:大小4,节点2、8、6、11
  • 左:大小3,节点1、10、4
  • 顶部:大小1,节点5
  • 右:大小3,节点7、3、9

1 个答案:

答案 0 :(得分:0)

好的,我找出了丢失的案件。该算法在连接非常紧密的图和重复的边上无法正确执行。这是我上面发布的测试用例的调整版本,具有重复的边缘和更多的边缘,可将整个图形变成一个大的SCC。

1 5
1 4
2 3
2 6
2 11
3 2
3 7
4 2
4 8
4 10
5 1
5 3
5 5
5 7
6 8
7 9
8 2
8 2
8 4
8 8
9 3
10 1
11 9
11 6