指定列的Spark SQL问题

时间:2018-12-17 09:49:44

标签: sql apache-spark apache-spark-sql apache-spark-2.0

我们正在尝试将Oracle数据库复制到配置单元中。我们从oracle获取查询,并在配置单元中运行它们。 因此,我们以以下格式获取它们:

INSERT INTO schema.table(col1,col2) VALUES ('val','val');

虽然此查询直接在Hive中运行,但是当我使用spark.sql时,出现以下错误:

org.apache.spark.sql.catalyst.parser.ParseException:
mismatched input 'emp_id' expecting {'(', 'SELECT', 'FROM', 'VALUES', 'TABLE', 'INSERT', 'MAP', 'REDUCE'}(line 1, pos 20)
== SQL ==
insert into ss.tab(emp_id,firstname,lastname) values ('1','demo','demo')
--------------------^^^
        at org.apache.spark.sql.catalyst.parser.ParseException.withCommand(ParseDriver.scala:217)
        at org.apache.spark.sql.catalyst.parser.AbstractSqlParser.parse(ParseDriver.scala:114)
        at org.apache.spark.sql.execution.SparkSqlParser.parse(SparkSqlParser.scala:48)
        at org.apache.spark.sql.catalyst.parser.AbstractSqlParser.parsePlan(ParseDriver.scala:68)
        at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:623)
        at org.apache.spark.sql.SQLContext.sql(SQLContext.scala:691)
        at com.datastream.SparkReplicator.insertIntoHive(SparkReplicator.java:20)
        at com.datastream.App.main(App.java:67)
        at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
        at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
        at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
        at java.lang.reflect.Method.invoke(Method.java:498)
        at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:755)
        at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:180)
        at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:205)
        at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:119)
        at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)

1 个答案:

答案 0 :(得分:2)

此错误即将出现,因为Spark SQL不支持insert语句中的列列表。因此请从插入语句中排除列列表。

下面是我的蜂巢表:

select * from UDB.emp_details_table;
+---------+-----------+-----------+-------------------+--+
| emp_id  | emp_name  | emp_dept  | emp_joining_date  |
+---------+-----------+-----------+-------------------+--+
| 1       | AAA       | HR        | 2018-12-06        |
| 1       | BBB       | HR        | 2017-10-26        |
| 2       | XXX       | ADMIN     | 2018-10-22        |
| 2       | YYY       | ADMIN     | 2015-10-19        |
| 2       | ZZZ       | IT        | 2018-05-14        |
| 3       | GGG       | HR        | 2018-06-30        |
+---------+-----------+-----------+-------------------+--+

在这里,我通过pyspark使用spark sql插入记录

df = spark.sql("""insert into UDB.emp_details_table values ('6','VVV','IT','2018-12-18')""");

您可以在下面看到给定的记录已插入到我现有的配置单元表中。

+---------+-----------+-----------+-------------------+--+
| emp_id  | emp_name  | emp_dept  | emp_joining_date  |
+---------+-----------+-----------+-------------------+--+
| 1       | AAA       | HR        | 2018-12-06        |
| 1       | BBB       | HR        | 2017-10-26        |
| 2       | XXX       | ADMIN     | 2018-10-22        |
| 2       | YYY       | ADMIN     | 2015-10-19        |
| 2       | ZZZ       | IT        | 2018-05-14        |
| 3       | GGG       | HR        | 2018-06-30        |
| 6       | VVV       | IT        | 2018-12-18        |
+---------+-----------+-----------+-------------------+--+

将您的spark sql查询更改为:

spark.sql("""insert into ss.tab values ('1','demo','demo')""");
  

注意:我使用的是spark 2.3,因此您需要使用蜂巢上下文   使用的是Spark 1.6版本。

让我知道它是否有效。