我对opencv和tesseract完全陌生。 我一整天都在尝试编写代码,以解析如下图像的游戏持续时间:original image(游戏持续时间位于左上角)
我来到的代码有时能够识别持续时间(大约占所有情况的40%)。在这里:
try:
from PIL import Image
except ImportError:
import Image
import os
import cv2
import pytesseract
import re
import json
def non_digit_split(s):
return filter(None, re.split(r'(\d+)', s))
def time_to_sec(min, sec):
return (int(min) * 60 + int(sec)).__str__()
def process_img(image_url):
img = cv2.resize(cv2.imread('./images/' + image_url), None, fx=5, fy=5, interpolation=cv2.INTER_CUBIC)
str = pytesseract.image_to_string(img)
if "WIN " in str:
time = list(non_digit_split(str.split("WIN ",1)[1][0:6].strip()))
str = time_to_sec(time[0], time[2])
else:
str = 'Not recognized'
return str
res = {}
img_list = os.listdir('./images')
print(img_list)
for i in img_list:
res[i] = process_img(i)
with open('output.txt', 'w') as file:
file.write(json.dumps(res))
什至不问我如何调整图像大小,但这有所帮助。 我还尝试过像这样首先裁剪图像: cropped image 但是tesseract在这里找不到任何文本。
我确定我要解决的问题非常简单。您能给我指出正确的方向吗?我应该如何对其进行预处理,以便tesseract将其正确解析?
答案 0 :(得分:0)
由于@DmitriiZ评论,我设法产生了有效的代码。 我做了一个预处理器,输出类似这样的内容: Preprocessed image Tesseract处理得很好。
这是完整的代码:
try:
from PIL import Image
except ImportError:
import Image
import os
import pytesseract
import json
def is_dark(image):
pixels = image.getdata()
black_thresh = 100
nblack = 0
for pixel in pixels:
if (sum(pixel) / 3) < black_thresh:
nblack += 1
n = len(pixels)
if (nblack / float(n)) > 0.5:
return True
else:
return False
def preprocess(img):
basewidth = 500
wpercent = (basewidth/float(img.size[0]))
hsize = int((float(img.size[1])*float(wpercent)))
#Enlarging image
img = img.resize((basewidth,hsize), Image.ANTIALIAS)
#Converting image to black and white
img = img.convert("1", dither=Image.NONE)
return img
def process_img(image_url):
img = Image.open('./images/' + image_url)
#Area we need to crop can be found in one of two different areas,
#depending on which team won. You can replace that block and is_dark()
#function by just img.crop().
top_area = (287, 15, 332, 32)
crop = img.crop(top_area)
if is_dark(crop):
bot_area = (287, 373, 332, 390)
crop = img.crop(bot_area)
img = preprocess(crop)
str = pytesseract.image_to_string(img)
return str
res = {}
img_list = os.listdir('./images')
print(img_list)
for i in img_list:
res[i] = process_img(i)
with open('output.txt', 'w') as file:
file.write(json.dumps(res))