我认为这与以下内容有关:Spark Error:expected zero arguments for construction of ClassDict (for numpy.core.multiarray._reconstruct)
我有一个数据框
id col_1 col_2
1 [1,2] [1,3]
2 [2,1] [3,4]
我想创建另一列,该列是cosine
与col_1
之间的col_2
距离。
from scipy.spatial.distance import cosine
def cosine_distance(a,b):
try:
return cosine(a, b)
except Exception as e:
return 0.0 # in case division by zero
然后我定义了一个udf
:
cosine_distance_udf = udf (cosine_distance, FloatType())
最后:
new_df = df.withColumn('cosine_distance', cosine_distance_udf('col_1', 'col_2'))
我有一个错误:PickleException: expected zero arguments for construction of ClassDict (for numpy.dtype)
我做错了什么?
答案 0 :(得分:2)
检查cosine
的返回类型时,错误的原因很明显:
type(cosine([1, 2], [1, 3]))
# numpy.float64
但是,np.float64
是float
的子类:
issubclass(np.float64, float)
# True
因此,只需稍作更改,您的功能
def cosine_distance(a, b):
try:
return float(cosine(a, b)) # cosine(a, b).item()
except Exception as e:
return 0.0 # in case division by zero
这将起作用
df.withColumn('cosine_distance', cosine_distance_udf('col_1', 'col_2')).show()
+------+------+---------------+
| col_1| col_2|cosine_distance|
+------+------+---------------+
|[1, 2]|[3, 4]| 0.01613009|
|[2, 1]|[3, 4]| 0.10557281|
+------+------+---------------+