当我尝试运行此命令时:
p0 = Sequential()
p0.add(Embedding(vocabulary_size1, 50, weights=[embedding_matrix_passage],
input_length=50, trainable=False))
p0.add(LSTM(64))
p0.add(Dense(256,name='FC1'))
p0.add(Activation('relu'))
p0.add(Dropout(0.5))
p0.add(Dense(50,name='out_layer'))
p0.add(Activation('sigmoid'))
q0 = Sequential()
q0.add(Embedding(vocabulary_size2,50,weights=embedding_matrix_query],
input_length=50, trainable=False))
q0.add(LSTM(64))
q0.add(Dense(256,name='FC1'))
q0.add(Activation('relu'))
q0.add(Dropout(0.5))
q0.add(Dense(50,name='out_layer'))
q0.add(Activation('sigmoid'))
model = concatenate([p0.output, q0.output])
model = Dense(10)(model)
model = Activation('softmax')(model)
model.compile(loss='categorical_crossentropy',optimizer='rmsprop', metrics=
['accuracy'])
这给了我这个错误:
AttributeError
---> model.compile(loss='categorical_crossentropy',optimizer='rmsprop', metrics=['accuracy'])
答案 0 :(得分:1)
如评论中所述,您需要使用Keras Functional API创建具有分支,多个输入/输出的模型。但是,无需为所有代码执行此操作,仅针对最后一部分:
concat = concatenate([p0.output, q0.output])
x = Dense(10)(concat)
out = Activation('softmax')(x)
model = Model([p0.input, q0.input], out)
model.compile(loss='categorical_crossentropy',optimizer='rmsprop', metrics=['accuracy'])